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Abstract—We analyze the performance of the Recursive
Projection-Aggregation (RPA) decoder of Ye and Abbe
(2020), for Reed-Muller (RM) codes, over general binary
memoryless symmetric (BMS) channels. Our work is a sig-
nificant generalization of a recent result of Rameshwar and
Lalitha (2025) that showed that the RPA decoder provably
achieves vanishing error probabilities for ‘“low-rate” RM
codes, over the binary symmetric channel (BSC). While a
straightforward generalization of the proof strategy in that
paper will require additional, restrictive assumptions on the
BMS channel, our technique, which employs an equivalence
between the RPA projection operation and a part of
the “channel combining” phase in polar codes, requires
no such assumptions. Interestingly, such an equivalence
allows for the use of a generic union bound on the error
probability of the first-order RM code (the “base case” of
the RPA decoder), under maximum-likelihood decoding,
which holds for any BMS channel. We then exploit these
observations in the proof strategy outlined in the work
of Rameshwar and Lalitha (2025), and argue that, much
like in the case of the BSC, one can obtain vanishing
error probabilities, in the large n limit (where n is the
blocklength), for RM orders that scale roughly as log log n,
for all BMS channels.

I. INTRODUCTION

Reed-Muller (RM) codes are a well-studied family
of binary linear codes that are obtained by the eval-
uations of Boolean polynomials on the points of the
Boolean hypercube [1], [2]. Recent breakthrough the-
oretical progress that has shown that RM codes are
capacity-achieving for the binary erasure channel [3],
and more generally, for BMS channels [4], [5] (we refer
the reader to the survey [6] for a detailed treatment of
the properties of RM codes).

Over the past few decades, much work has been
dedicated to finding practical (low-complexity) decoding
algorithms for RM codes. The earliest such algorithm
by Reed [1] is capable of correcting bit-flip errors up to
half the minimum distance of the code. For the case of
first-order RM codes, a Fast Hadamard Transform-based
(or FHT-based) decoder was designed in [7], [8], which

is an efficient implementation of a maximum likelihood
(ML) decoding procedure. We also refer the reader to
decoding algorithms for RM codes of higher code that
display good performance at moderate blocklengths in
the works [9]-[14].

A much more recent decoding algorithm, variants
of which were shown to achieve near-ML performance
at moderate blocklengths over the binary symmetric
channel (BSC), is the Recursive Projection-Aggregation
(RPA) decoder of Ye and Abbe [15]. Later works [16],
[17] presented procedures for reducing the complexity
of the RPA decoder, by making use of a subset of the
subspaces employed by the RPA decoder, for projection.
More recent work [18], however, argues that limiting the
number of subspaces used could suffer from significant
performance loss, due to the presence of “coset error
patterns”. In this work, we hence work with the original
RPA decoder of Ye and Abbe, which makes use of all
subspaces of a fixed dimension, for projection.

Our main efforts in this paper are directed towards
obtaining analytical performance guarantees for RPA
decoding, via explicit bounds on the probability of error,
over general binary memoryless symmetric (BMS) chan-
nels. Recent work [19] has obtained theoretical upper
bounds on this error probability for the case when the
channel is a binary symmetric channel (BSC). In this
work, we generalize the results in [19] to the broad
class of BMS channels, of which the BSC is a part.
We mention however that such an extension does not
follow straightforwardly from the proof strategy of [19]
— indeed, while somewhat direct modifications can be
carried out by placing additional restrictions on the
channel (such as requiring a bounded output alphabet
size and bounded log-likelihood ratios, for all outputs)
— the problem of deriving general bounds for arbitrary
BMS channels requires different techniques.

Our main result (Theorem 4) shows that RPA decoding



for general BMS channels guarantees vanishing error
for RM orders roughly logarithmically in the parameter
m = logn, where n is the code blocklength — a
scaling that is asymptotically identical to that obtained
in [19]. Our proof proceeds via the identification of an
equivalence between the projection operation in RPA
decoding and a certain channel combining operation in
polar code construction, which allows for the use of
a standard union bound on the ML error probability
of first-order RM codes, which form the “base case”
of the RPA decoder. Crucially, our analysis retains an
important element of the proof strategy of [19], which
restricts attention to the case when one iteration of the
RPA decoder suffices for convergence. It hence appears
that relaxing this restriction and performing an analysis
of RPA decoding in the presence of the correlations
introduced via multiple iterations is key to obtaining
asymptotic improvements in error probability.

II. NOTATION AND PRELIMINARIES
A. Notation

Random variables are denoted by capital letters, e.g.,
X,Y, and small letters, e.g., z,y, denote their instantia-
tions. Log-likelihood vectors are however denoted as L,
following standard notation.The notation O denotes the
all-zeros vector, whose length can be inferred from the
context. Natural logarithms are denoted as In. The nota-
tions O(+),0(+), (), w(-) are used to refer to members
of the standard Bachmann-Landau family of asymptotic
notations. The indicator function 1[-] takes the value 1
when the argument is true, and 0, otherwise.

B. Reed-Muller Codes

Consider the polynomial ring Fa[z1,x2,...,2Zy] in
m variables. For a polynomial f € Fa[x1,za,. .., %]
and a binary vector z = (z1,...,2,) € F5', we write
f(z) = f(z1,...,2m) as the evaluation of f at z. Let
F;T[Il, Z2,...,%y] denote the collection of polynomi-
als of degree at most r. The evaluation points are ordered
according to the standard lexicographic order on strings

in F*, ie., if z = (21,...,2m) and 2’ = (21,...,2.,)
are two evaluation points, then, z occurs before z’ iff
for some i > 1, we have z; = z; for all j < 1,

and z; < z.. Now, let Eval(f) := (f(z) :z € FJ*) be
the evaluation vector of f, where the coordinates z are
ordered according to the standard lexicographic order.

Definition 1 (see Ch. 13 in [20], or [21]). For 0 <r <
m, the r'"-order binary Reed-Muller code RM(m, ) is
defined as

RM(m,r) := {Eval(f) : f € F5"[x1, 2, ..., 2m]}.

All through, we set n := 2.

C. BMS Channels and RPA Decoding

We refer the reader to [22, Ch. 4] for the definition of
binary memoryless symmetric (BMS) channels.

Definition 2. The Bhattacharyya parameter Z(W) of a
BMS channel W with output alphabet Y is defined as

ZW) =37 \/Prio(=10) Py (=]1),

yey

when Y is finite, with the conditional p.m.f.s above
replaced by corresponding probability densities and the
summation above replaced by an integral, when the
channel laws correspond to continuous probability dis-
tributions.

The RPA decoding algorithm for general BMS chan-
nels is briefly recapitulated as Algorithm 1 (see also [15,
Alg. 3])!. In all that follows in this paper, we assume
that the RPA decoder uses one-dimensional subspaces
for projection.

In Algorithm 1, L denotes the vector of log-likelihood
ratios (LLRs) with L = (L(z) : z € {0,1}"™), where
L(z) :=log %Ezz}?g, andy = (y. : z € {0,1}™) is the
received vector at the end of the BMS channel. In Step
2, we use

LYN(T) := log (exp(L(2)+L(z ®v)) + 1)
— log (exp(L(z)) + exp(L(z @ v))).

In Step 4, the subroutine FHTDecoder refers to the
standard Fast Hadamard Transform decoder [7], [8] for
ML decoding of first-order RM codes. Furthermore, in
this paper, we do not set a “tolerance threshold” # as in
the original work [15], and instead only run the decoder
for a fixed number N, of iterations. However, for the
purpose of analysis, as in [19], we restrict attention to
the setting where one iteration of RPA decoding suffices
for returning the correct decoded estimate.

Given the code RM(m,r), let C denote a (random)
codeword that is drawn uniformly at random from the
code. Now, let Y be the received sequence at the
end of the BMS channel W and let C' denote the
estimate of the input codeword obtained by using the
RPA decoder in [15, Alg. 3]. The probability of error
of RM(m,r) under RPA decoding is then defined as

Pur(RM(m, 7)) := Pr [6 + C].

TAlgorithm 3 of [15] in fact is stated for general binary-input
memoryless channels that are not necessarily symmetric.



Algorithm 1 RPA Decoder for RM(m, r)
Input: LLR vector L € R™, max iter. Ny ax
Output: ¢ € {0,1}".
1: for j =1 to Nyax do
2: Projection: For each v € F5\{0} and each coset
T = {z,2 ® v}, compute L)(T).
3: if r > 2 then Compute
RPA(m—1,r—1,L").
4: else Set ¢ <~ FHTDecoder(L) break

OIS

5: Aggregation: For each z € F5*, compute
L (1-25 ) Lizow).
() & g1 2 (1-20 =+ ) L(z0)
v#£0
6 Set L+« L.

~

: Set ¢(z) < 1[L(z) < 0] for all z; return ¢.

Definition 3 (RPA Recursion Tree). The RPA decoding
of RM(m, r) induces a recursion tree T with the follow-
ing structure:

o The tree has depth r, with orders indexed by i €

{1,2,...,r}.
o Nodes are uniquely identified by a pair v = (i, j)
where:

- i€{1,2,...,r} is the height of the node, where
the root is at height r
- j€{1,2,...,N;} is the index at height i; there
exists a one-one correspondence between j and
the subspace v used for projection
e A node v = (i,j) at order i corresponds to the RM
code RM(m —r +4,1).

Owing to the close relationship between the recursions
in a single iteration of the RPA decoder and the tree
structure defined above, we let LZ(-] ) denote the LLR
vector L(*) at the (r—i)™ step of the recursion, using the
subspace v associated with index j of the node (3, j), for

i €{1,...,r}. The estimates Zgj) and ﬂgj) are similarly
defined.

The next lemma considers the channel
W~ (y1, 92| 8)

1
=3 Z Wiy |u) W(yz | u2), s€{0,1},
wy,u2€{0,1}
u1Pus=s

which, as we argue, is precisely the channel induced via
the projection operation.

Lemma 1. Ler W: {0,1} — Y be a binary-input
memoryless symmetric (BMS) channel. Then:

1) W~ is a BMS channel.

2) For any nonzero v € ¥, the pair (Y (z),Y (2®b))
conditioned on C(z) ® C(z @ b) has distribution
W-.

3) The Bhattacharyya parameter satisfies Z(W~) <
1—(1-2zW))%

Proof. (1) Follows directly from [23, Prop. 13].

(2) Let U;,U; ~ Bern(1/2) be independent and
set S = U; @ Usy. It can easily be checked that
PYi=y,Ya=y2 [ S=s} = W (y,y2 | s), for
s € {0,1}. Any projection v # 0 selects a coset
{z, 2®v}, and because the channel uses are memoryless,
the distribution of (Y'(2),Y(z @ b)) given the parity
C(z) ®C(z @ b) is W~. Thus the induced channel for
projection along b is W ~.

(3) Follows directly from [23, Prop. 5]. O

Following Lemma 1, we see that the channel in-
duced by projecting along any one-dimensional subspace
{0, v}, which we denote W(*), is exactly W~ . Following
previous notation, we let W; stand for the (common)
channel induced after any projection at the (r —i + 1)1
step of the RPA recursion, ¢ € {1,...,r}. Let Z; be the
Bhattacharyya parameter of channel W;.

Lemma 2. We have that Z; <1 — (1 — Z;41)?.

Proof. Fix any node at height ¢ + 1, and consider
the projection along a one-dimensional subspace B =
{0,v}. By Lemma 1 (Items 2 and 3), we obtain that

ZW5,) < 1-(1-Z(Wis))®. Since Z; = Z(W;) =
Z(W®), we obtain the desired bound. O
Lemma 3. We have that for any i € {1,...,r}, Z; <
1—(1-2)%".

Proof. From Lemma 2, we know that Z; < 1 — (1 —
Zi+1)2. Define Y; =1- Zz Then, Y; = (1 — Zi+1)2 =
V2. Therefore, Z; =1-Y; =1-Y? "=1-(1-
Z.)? . O

III. MAIN RESULT

As in [19], we use [15, Prop. 2] to focus our analysis
on the case when the input codeword is fixed to be C' =
0 € {0, 1}V, since, via the symmetry of the channel, we
have that Pe(RM(m,)) equals the error probability of
the all-zeros codeword. In what follows, we let Z =:
Z(W) € (0,1) denote the Bhattacharyya parameter of
the BMS channel W of interest®.

2We restrict our attention in this paper to “non-degenerate” BMS
channels whose Bhattacharyya parameters are strictly bounded away
from O and 1.



Theorem 4. Let A := —In(1 — Z) € (0,00). For r <
m—r o0

log, m — logy A, we have P,,,(RM(m,r)) ——— 0.

Remark 1. Consider the setting where the BMS chan-
nel W is the BSC(p), with the cross-over probability
p € (0,1/2). Theorem II.1 of [19] shows that for

r < Ilnm+In (m(lfl%p)) the RPA decoder achieves
vanishing error probabilities over the BSC(p). Using the
fact that for this channel, we have Z = 2+/p(1 — p),
it can be checked via numerical comparisons that the
claim in [19] is stronger than Theorem 4, for all
p € (0,1/2). However, both claims provide identical
asymptotic guarantees on the growth rate of r with
m (i.e., r growing roughly logarithmically in m) for
vanishing error probabilities under RPA decoding.

IV. HELPER LEMMAS

In order to prove Theorem 4, we shall first establish
an upper bound on the error probability at each stage
of recursion in terms of the error probabilities of the
previous stages. We then unroll this recursion to obtain
the final block error probability. But first, we require
some more notation. For 1 < i < r, let N; := 2m—"+%,
Thus, the number of subspaces used for projection at any

node at height 7 is V; — 1.

Definition 4. Forany 1 < i < rand j < N;, let Q
the event that the decoded estimate Y( D at node (1, )
ofT lS mcorrect (does not equal 0). Further let Q; :=

(@)
JlQ

We are interested in obtaining an upper bound on
P{Q,}, which directly yields an upper bound on
P (RM(m, 7).

Definition 5 For a node (i,j) at height i > 2, define
the event G, () gs the event that all children of node (4,7)
with order i + 1 are decoded correctly.

A. Recurrence Relations for P{Q;}

We proceed with deriving a recurrence relation for
P{Q;}, 1 <i < r,in terms of P{Q,}, j < ¢; in all
that follows, we implicitly condition on the fact that the
all-zeros codeword was transmitted. We then “unroll”
this recurrence to yield a closed-form upper bound on
P {Q;}. For any event £, we let £ denote its complement,
where the universe can be inferred from the context.

First, we obtain an upper bound on P {Q;}, which
forms the “base case” of our recursive analysis of
error probabilities. While the upper bound can also be
obtained via the application of a standard union bound
argument for the ML error probability (see, e.g., [24

Sec. 2.1] or [22, Problem 1.21]), we provide a direct
proof, using properties of first-order RM codes, which
could be of independent interest.

Lemma 5. We have that P {Q;} < (2™~"+2-1)z23"""
Proof. Via standard arguments (see, e.g., [19, Sec. IV-
Al]), there exists a one-one correspondence between the
codewords of RM(m — r + 1,1) with the functions
o - xs where s € {0,1}™ " and 0 € {&1},
with xs(x) = (=1)%%, x € {0,1}™ "1 The Fast
Hadamard Transform (FHT) used by the RPA decoder
then computes

L,0 - xs)-

Here, for functions f,¢: {0,1}" — {—1,1}, we define
their inner product (f,g) := 5+ - Yzefon f(@)g(@),
and L denotes the vector of log-likelihood ratios (L(z)),
for 2 € {0,1}™"+L, with L(2) := log y5{%). It can
be checked that the “correct” codeword for angl leaf node
of T is the all-zeros codeword 0, which corresponds to
(0,s) = (1,0). For any pair (o,s) # (1,0), define the
event, &, s = L[(L,0xs) > (L, xo0)]. The FHT decoder
makes an error iff &, s occurs, for some (o, s) # (1,0).
Thus, via a union bound,

(0,5) = argmax,

P{oi}< Y P&}
(0,5)#(1,0)

Observe  that (L,o xs) — {L,xo) =
=2 oxa(s)=—1 L(2). Hence the event &y, is
equivalent to,
s = 1] L(z) <0 = 1je =5 > 1].

zioxs(2)=—

(1)

Therefore by applying the Markov inequality to (1), we
have

Pilost <E [g%}

-

zioxs(z)=—1

E {e—#} . )

We reiterate that all probabilities and expected values
above are conditioned on O being transmitted. The last
step holds since L(z) are i.i.d. across z € {0, 1}~ "+1,
Now, observe that

—L(z)/2 y|1)
E o262 = ZW o)
:Z\/ (YlO)W (y|1) = Z1.




Therefore, following on from (2),
H E |:€ L(z):| Z‘{Z 10X (2 )**1}‘.

zioxs(z)=—1
We now bound the exponent |{z : o - xs(z) = —1}|. For
any nonzero S, xs has equal number of +1 and —1.
As a result, [{z:0-xs(z) =—1} = 2™ for all
s # 0 because multiplying by o flips the signs globally.

Moreover, when s = 0, we have that when o0 = —1,
{z:oxs(2) = —1}| = 2™~ "1, Therefore,

P{&, .} <z, forall (0,5) # (1,0).
Finally, via (IV-A), we obtain that P { Q; } < (2m~"2—
1)Z1 ’VYL*T‘. D

Lemma 6. For i > 2, we have
P{Qi} < N;ZYi ' + (N; - )P{Qi—1} .
Proof. We know that
P{Q;} <P{Qi|Gi} +P{Gi}. 3)

We will prove the lemma by showing the following two
claims hold: Firstly, that

]P){gz} < _I)P{Ql 1}; (4)
and secondly, that
P{Q;|Gi} < N;Z}i". )

To prove the first claim, notice tha/t the event G; is
equivalent to the event ﬁj/ech(i,j)QgH, where ch(s, j)
denotes the collection of children of node (i, j). Hence
by the union bound, we get that

P{G}< > P{QY\} < (Ni- D)P{Qin},
J’ch(4,5)
thereby proving (4).

Now we move on to proving the second claim (5).
Let F, for z € F5*~"*" be the event that Y J)( ) # 0.
Now, via arguments similar to those in [19, Sec IV-B],
it can be checked that conditioned on the event G;, the
“aggregated” LLR vector L(j ) at node (z j) obeys

L(])( ) ST Z L
2tz
Let fgj)(z) = (2m=+i —1). LY (2). We then have via

the Markov inequality that
P{F.I6:} =P{I" () <0}

<E [e—fﬁ”(z)/z}
H E|: L(J) :| _ Z(Wi)znl_r+i71.
z#z!

Now, conditioned on G;, note that we have @Q; =
UZeF;n,—r+i.Fz. Hence,

P{QilGi} < > P{F.IG}

zEFm7T+i
2717, r+1i -1
— 9m— r+1 Z(W ) ,
thereby proving our second claim. O

B. Explicit Upper Bound on P{Q;}
The following lemma then follows by “unrolling” the
recursion in Lemma 6.

Lemma 7. Define for each t € {2,...,r},

7 m—r+t__ _
Ay =2t 72 ! By :=2m" 1.

9

Then for every i € {2,...,1},

P{Q;} < Z (Af H B. ) +P{Ql}ﬁBs-
s=2

s=t+1

In particular,

P{Q,} < Z (At I] B ) +]P’{Q1}f[BS.

s=t+1
V. PROOF OF MAIN RESULT

In this section we will prove Thm. 4.

Proof of Thm. 4. For each t € {2,...,r} from
Lemma 3 we have that A, := 2™~ 7+tZTﬂ " and
B, = 2m~rtt _ 1 < 2m="+t Qbserve that for any
URS {2,...,7‘}, we have

r T
H By = H gm—r+s
= _ 2(7"—“"1‘1)(7”_7“)""2::“ s < 2O(m7‘).

Thus, from Lemma 7,

P{Q, }<2O<“"IP{91}+Z2O mn Z2" T (6)
t=2

We will individually show that each term above ap-
proaches zero in the large m limit, for » < logym —
logy A — 0, for some small constant d. For the first term
we will show that P{Q;} is very small compared to
its multiplicative pre-factor that is 2°(™") To this end,
recall that A := —In(l — Z) = —In(1 — Z,). From
Lemma 3, we know that (1 — Z;) > (1 - Z, R
e~*2""". Now, from Lemma 5, we obtain using the
previous inequality that

—1
7@67)\-2? )

P{Ql} S 2m—r+2e—(2m



Here, we use the fact that for any positive integer k,
ZF < e~*(1=Z1) Notice that in the regime r < log, m —
logy A — 6, we have \-2"~! = O(m). Therefore, 2™~ " -
exp(—A2""1) = exp(Q(m)). Plugging this into the first
term in (6), we get that

2771—re—>\2T_1)

QO(mr)P{Ql} < 20(m7’)2m—’r‘+2€—(

£20m)

< QO(mT)e, m—00 0.

Now we focus on the second summation in (6); we
will show that each summand approaches zero. So fix
any t, define by = 2™~"tt — 1. Then, since fo <
e~ (1=Z¢)  we have that

(1 — Z;)by > exp(—A2""H)(2m "+t 1)

> 2mfr+t71 . exp(_)\ . zrft)
=exp((m—r+t—1)In2-x-2""77).

Again using the fact that A - 2"~/ < X\ . 2"71 = o(m),
we get that
(m—r+t—1)In2—-X-2""" = O(m) —o(m) = Q(m).

Plugging this into any term in the summation in (6), we
get that

2O(mr) Zt2m'7r+t71 < 2O(mr) e~ exp(m—r+t—1)In2-12""%)

m—r oo

0.
This concludes the proof of Theorem 4. O
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