

Lecture 1

Welcome to EE5160: Error-Control Coding @ IIT Madras!

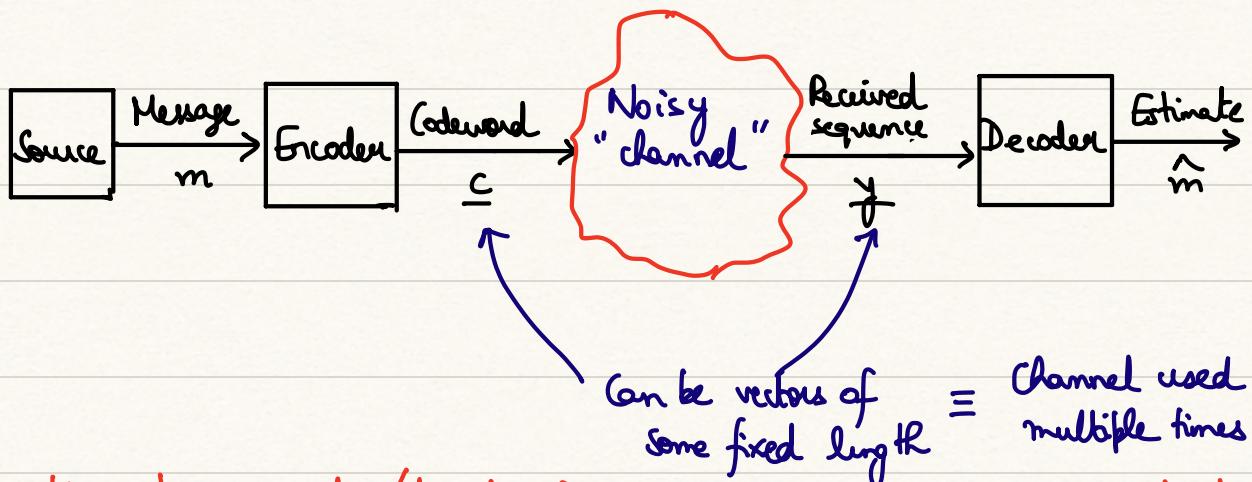
Instructor: Arvind Rameshwar ; Office: ESB-222

Administrivia, Course Logistics : Discussed in class

Motivation

① Digital communication : Sending information reliably from source to destination.
E.g.: Several layers of TCP/IP stack use error-control coding (Ecc),
satellite & deep space communication

Oft-used but very succinct picture:



Qn: How to encode/decode for combating noise, but ensuring high communication "rate"?

② Secret sharing : Collection of n high-profile individuals, e.g., board of a company. CEO has a secret (e.g., a will) to be shared with them

such that $\geq t$ -sized group can "decode" the secret,
but $<(t-1)$ -sized group cannot.

Qn: How to share secret so that such a property is obeyed?

③ Group testing: Pandemic infects a neighbourhood; how to test to efficiently identify infected individuals?

Assume: # infected individuals \ll Total # individuals

Qn: How to design "group tests" to isolate infected individuals?

④ Storage in recording media: Data stored on the cloud is booming;
how to ensure reliable recovery of stored dog/cat photos
when individual nodes in data centres fail at regular intervals?

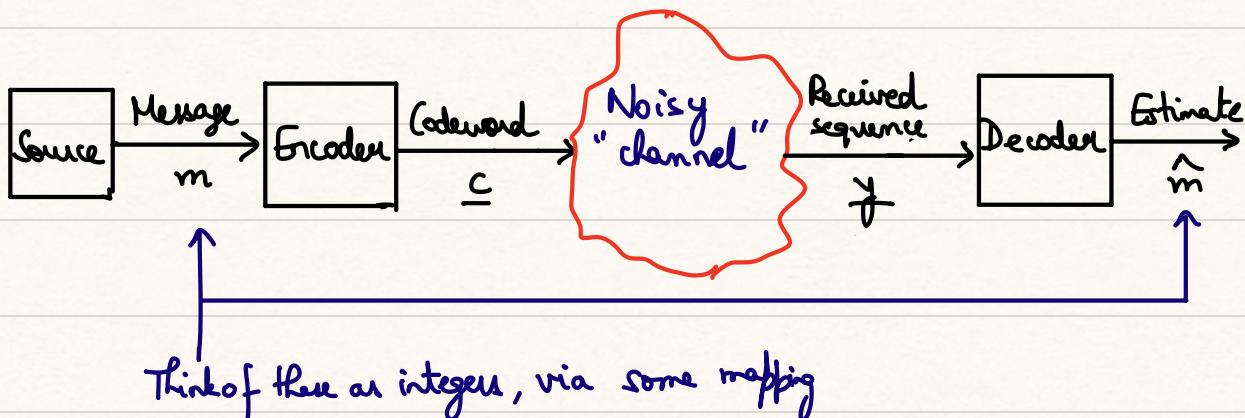
e.g.: AWS, Azure (+ modern DNA-based data storage)

Qn: How to store large quantities of data with reliable recovery?

⑤ Others (too many to name all) applications: Quantum error-correction,
correcting errors in streaming data (e.g. Netflix), cryptography, etc.

In this course, we shall mainly work with problem setting ① \equiv ④
[An answer to Problem ② will arise later in the course]

Formalizing Problem ①



① The Encoder

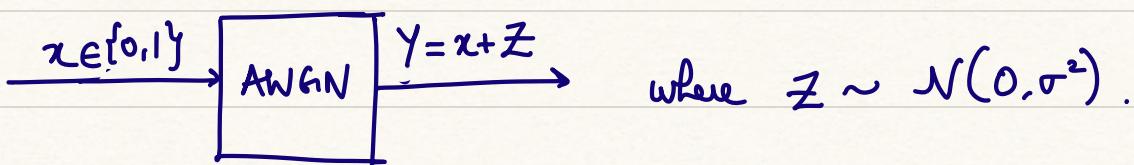
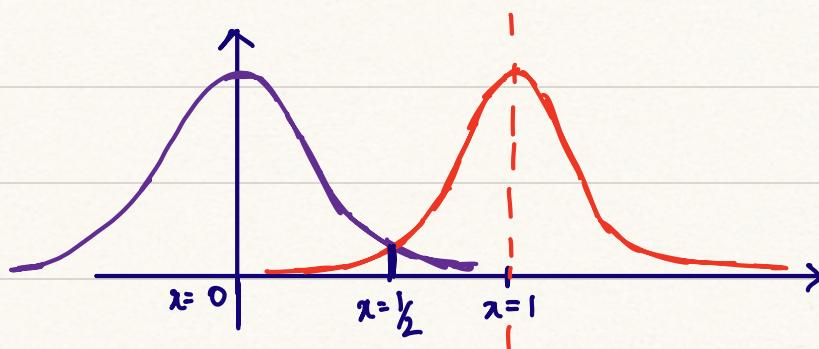
The encoder maps messages $m \in M$ to a codeword $c \in \mathcal{X}^n$, for some finite alphabet \mathcal{X} of size $q := |\mathcal{X}|$. We call this mapping a "code"/"codebook" $L \subseteq \mathcal{X}^n$.

For simplicity, we often work with $\mathcal{X} = \{0,1\}$ (binary alphabet).

② The channel

A common channel in communications is the binary AWGN channel.

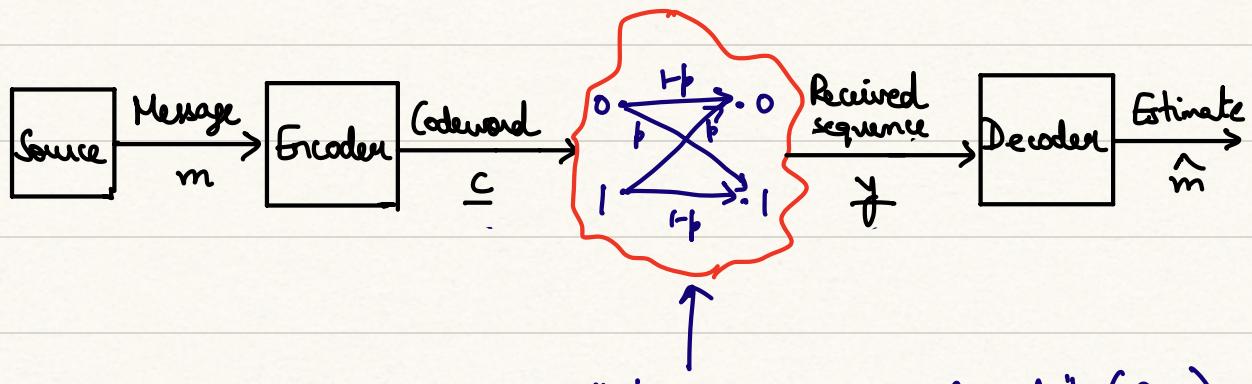
"additive white Gaussian noise"



A "demodulator" declares $\bar{y} = 1$, if $y > \frac{1}{2}$, and $\bar{y} = 0$, otherwise.

HW ①: Describe the "channel" between X and \bar{Y} , i.e., what is $P[\bar{Y} = i | x=j]$, for $i, j \in \{0, 1\}$?

If you've successfully answered HW ①, you will understand the motivation behind the channel model:



The "binary symmetric channel" (BSC).

Errors are bit-flips.

Examples of simple codes / decoders: In this course, we shall mainly work in the setting where the # bit-flip errors $\leq t$, for some $1 \leq t \leq n$.

① Repetition code:



Pick \mathcal{D} to be the majority-vote decoder, i.e.,

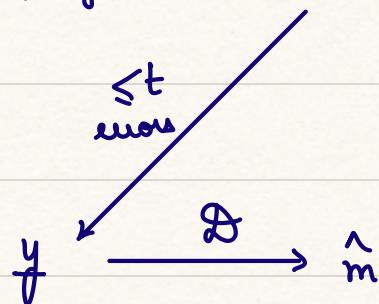
$$\hat{m} = \begin{cases} 0, & \text{if } \sum_{i=1}^3 y_i \leq 1, \\ 1, & \text{if } \sum_{i=1}^3 y_i \geq 2. \end{cases}$$

Qn: How many errors (t) can be corrected by this decoder?

$$\text{Code rate } R := \frac{\log |M|}{n} = \frac{1}{3}. \quad \text{Error correction capability } \approx \frac{t}{n} = ?$$

② Single parity-check code :

Message $m \in \{0, 1\}^{n-1} \xrightarrow{\mathcal{L}} \underline{c} = (m, p(m))$, where

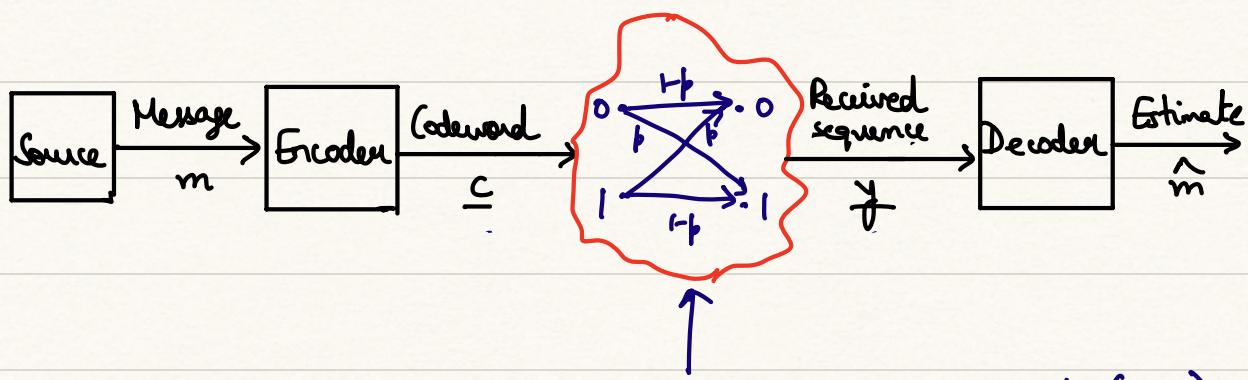


$$\begin{aligned} p(m) &= \text{Parity}(m) \\ &= \begin{cases} 1, & \text{if } \sum_{i=1}^{n-1} m_i \text{ is odd,} \\ 0, & \text{o.w.} \end{cases} \end{aligned}$$

$$\mathcal{D}(y) = \begin{cases} y, & \text{if } p(y) = 0, \\ \text{Error, o.w.} \end{cases}$$

\mathcal{D} can detect odd # errors

Back to



The "binary symmetric channel" (BSC).

Say $m = \underline{m} \in \{0,1\}^K$ and p = "Crossover prob." is given. Suppose \mathcal{C} is a repetition code that repeats each bit m_i , $i \in [K]$, of \underline{m} , 3 times

Prob. that a given block is decoded correctly

$$= \sum_{j=0}^1 \binom{3}{j} \cdot p^j (1-p)^{3-j}.$$

The overall goal of coding theory is to "efficiently" design codes/decoders of "high" rate and "high" error-correction capability.