

Lecture 3: Mathematical preliminaries : Groups

A quick intro of groups

Def 1: A group $(G, +)$ is a set G and operation '+' that obey:

(i) For any $a, b \in G$, we have $a + b \in G$ (Closure)

(ii) For any $a, b, c \in G$, we have $(a + b) + c = a + (b + c)$ (Associativity)

(iii) \exists an element $0 \in G$ s.t. $a + 0 = 0 + a = a, \forall a \in G$ (Existence of identity)

(iv) For each element $a \in G$, \exists an element $(-a) \in G$ s.t. $a + (-a) = (-a) + a = 0$ (Existence of inverse)

Remark: We will only consider abelian groups G that are commutative.

Eg: The set of integers \mathbb{Z} , the set of reals \mathbb{R} , the set of rationals (under +) (under +) (under +)

Q: Can these groups above be modified to also be groups under the standard multiplication operation?

HW ① : (i) Prove that the inverse $(-a)$ of an element a and the identity element 0 are unique.

(ii) Prove that the set

$$a + G \triangleq \{a + g : g \in G\}$$

equals G itself.

(iii) Consider a "cyclic group" G_1 with a generator $g \in G_1$ such that any element $a \in G_1$ can be written as

$$a = \underbrace{g + g + \dots + g}_{K \text{ times}} \stackrel{\triangle}{=} kg, \text{ for some } k.$$

Let n be the smallest integer such that $ng = 0$.

Show that $\{g, 2g, 3g, \dots, ng = 0\}$ equals G_1 .

[Eg: Given $w = e^{i2\pi/n}$, the set $\{1, w, w^2, \dots, w^{n-1}\}$ is a cyclic group generated by w under complex multiplication]

Def (Order): The order of a group $(G_1, +)$ equals $|G_1|$.

Def (Subgroup): A subgroup $(S, +)$ of the group $(G_1, +)$ is a group with $S \subseteq G_1$.

Eg: $(\mathbb{Z}, +)$ is a subgroup of $(\mathbb{Q}, +)$, which in turn, is a subgroup of $(\mathbb{R}, +)$.

Def (Coset): Let $(S, +)$ be a subgroup of $(G_1, +)$.

A coset (or translate) of the group $(S, +)$ is a set of the form

$$g + S \stackrel{\triangle}{=} \{g + s : s \in S\},$$

for some $g \in G_1$.

Remark: If $g \in S$, then $g + S = S$.

Thm 1: Two cosets are either disjoint or identical

Proof: Consider cosets $g_1 + S$ and $g_2 + S$, for some $g_1, g_2 \in G$.

Suppose that $g_1 - g_2 \in S$. Then, $g_1 \in g_2 + S$ and $g_2 \in g_1 + S$ (why?)

Thus, $g_1 + S \subseteq g_2 + S$ and $g_2 + S \subseteq g_1 + S$, giving rise to
 $g_1 + S = g_2 + S$.

Else, suppose that $g_1 - g_2 \notin S$. Then, if $g_1 + S$ and $g_2 + S$ have any element h in common, then $h - g_1 \in S$ and $h - g_2 \in S$

↓

$g_1 - g_2 \in S$
[Contradiction!]

Thm 2: If S is a subgroup of a finite group G , then $|S| \mid |G|$.
[Lagrange's Thm.]

Lemma 3: All cosets of S in G are of the same size.

Proof: HW / discussion.

Proof of Thm 2: Putting together Thm 1 and Lemma 3, we see that since

(picture)

, we must have $|S| \mid |G|$.

Example : Consider the group \mathbb{Z}_n of integers modulo n . [Prove that this is a group!]

Note that $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$. Let S be a "cyclic subgroup" of \mathbb{Z}_n with generator m , i.e. (see HW above), $S = \{0, m, 2m, \dots, (k-1)m\}$, where Km is the least integer s.t. $Km = 0 \pmod{n}$, i.e., Km is the LCM of m and n . K is also called the "order of m ".

We know that $Km = \frac{mn}{\gcd(m, n)} \equiv |S| = K = \frac{n}{\gcd(m, n)}$

HW : Within \mathbb{Z}_{20} , find subgroups of order 2, 4, and 5.

Def (Euler totient function): The Euler totient function $\phi : \mathbb{N} \rightarrow \mathbb{N}$ is such that $\phi(d)$ is the number of integers relatively prime to d .

Example. In \mathbb{Z}_n , let $d \mid n$. Consider the collection

$$S_d = \left\{ e : e = \frac{ln}{d}, \text{ for some } l \in [d] \text{ relatively prime to } d \right\}.$$

S_d is the collection of elements of order d in \mathbb{Z}_n .

The number of elements in this collection is $|S_d| = \phi(n/d)$.

(Why?)

Since the coll's ($S_d : d \in [n], d \mid n$) are pairwise disjoint, and their union is $[n]$ (Why?), we must have

$$n = \sum_{d \mid n} \phi(n/d) = \sum_{d \mid n} \phi(d)$$

HW for
a generic
cyclic
group G .

Def (coset leader): A coset leader / representative of a coset is any element of a coset.

Remark: 0 is a coset leader of a subgroup $S \subseteq G$.