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Motivation

FSCs and Capacity

Discrete Finite-State Channels (FSCs) are used to model:

Inter-Symbol Interference in Magnetic and Optical Recording
[e.g., Immink, Siegel, Wolf, ’98]
Inter-Cell Interference in NAND Flash Memories
[e.g., Li, Kavčić, Han, ’16]
Fading in Mobile Radio Channels
[e.g., Semmar, Lecours, Chouinard, Ahern, ’91]

Computing Capacities of FSCs

→ Capacity-achieving coding
schemes
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Motivation

Hurdles and Goals

Without Feedback:

Computing Capacity is equivalent to
computing H(Y)

Hard, for even simple input-constrained
DMCs with Markovian input

With Feedback:

Pros: Simple recipe for
computing FB capacity

Cons: Computationally
intractable

Twin Goals:
1 Get good bounds on capacity, without feedback
2 Numerically evaluate feedback capacity to suggest simple

coding schemes
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Infinte-Horizon Average-Reward DP
The Bellman Equation

Detour: An Introduction to DP

States: zt ∈ Z

Action: ut ∈ U;
Policy: π = {u1, u2, . . .}
Disturbance:
wt ∼ PW (·|zt−1, ut)

Dynamics:
zt = F (zt−1, ut ,wt)

Reward: rt = g(zt−1, ut)

Calculate ρ∗ = sup
π

lim inf
N→∞

1

N
Eπ

[
N∑
t=1

g(Zt−1,Ut)

]
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The Bellman Equation

The Bellman Equation

Theorem (Bellman Equation)

If ρ ∈ R and a bounded function h : Z→ R satisfies for all z ∈ Z,

ρ+ h(z) = sup
u∈U

[
g(z , u) +

∑
w

P(w |z , u)h(F (z , u,w))

]
,

then ρ = ρ∗.

Also helps identify optimal stationary policy

V. Arvind Rameshwar Bellman meets Shannon: On DP and Capacity Computation



Background
Dynamic Programming Framework

Bounds for FSCs Without Feedback
Numerical Results for FSCs With Feedback

Infinte-Horizon Average-Reward DP
The Bellman Equation

The Bellman Equation

Theorem (Bellman Equation)

If ρ ∈ R and a bounded function h : Z→ R satisfies for all z ∈ Z,

ρ+ h(z) = sup
u∈U

[
g(z , u) +

∑
w

P(w |z , u)h(F (z , u,w))

]
,

then ρ = ρ∗.

Also helps identify optimal stationary policy

V. Arvind Rameshwar Bellman meets Shannon: On DP and Capacity Computation



Background
Dynamic Programming Framework

Bounds for FSCs Without Feedback
Numerical Results for FSCs With Feedback

Infinte-Horizon Average-Reward DP
The Bellman Equation

The Bellman Equation

Theorem (Bellman Equation)

If ρ ∈ R and a bounded function h : Z→ R satisfies for all z ∈ Z,

ρ+ h(z) = sup
u∈U

[
g(z , u) +

∑
w

P(w |z , u)h(F (z , u,w))

]
,

then ρ = ρ∗.

Also helps identify optimal stationary policy

V. Arvind Rameshwar Bellman meets Shannon: On DP and Capacity Computation



Background
Dynamic Programming Framework

Bounds for FSCs Without Feedback
Numerical Results for FSCs With Feedback

System Model
Ideas and Directions
Dynamic Programming Formulation
Single-Letterization
Applications

FSCs Without Feedback

V. Arvind Rameshwar Bellman meets Shannon: On DP and Capacity Computation



Background
Dynamic Programming Framework

Bounds for FSCs Without Feedback
Numerical Results for FSCs With Feedback

System Model
Ideas and Directions
Dynamic Programming Formulation
Single-Letterization
Applications

The Setup

V. Arvind Rameshwar Bellman meets Shannon: On DP and Capacity Computation



Background
Dynamic Programming Framework

Bounds for FSCs Without Feedback
Numerical Results for FSCs With Feedback

System Model
Ideas and Directions
Dynamic Programming Formulation
Single-Letterization
Applications

The Setup

DMC:
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P(yn, sn|xn, s0) =
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The Setup

Generic FSC:

P(yn, sn|xn, s0) =
n∏

i=1

P(yi , si |xi , si−1)

Input-Driven FSC:

P(yn, sn|xn, s0) =
n∏

i=1

P(yi |xi , si−1)1{si = f (si−1, xi )}
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Examples

Input-Constrained DMCs:

(d ,∞)-RLL input
constraint:

(d , k)-RLL input
constraint:

Other Channels:

Flash-Memory Channel
(101→ 111 w.p. ε):

si = (xi , xi−1)

ISI: yi =
m∑

k=0

hkxi−k + zi

si = (xi−m, . . . , xi−1)

Assumption: s0 known to encoder and decoder
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Summary of Results

C = lim
N→∞

max
Q(xN |s0)

1

N
I (XN ;Y N |s0)

Upper Bounds

FB Capacity

[Sabag et al., ’16, ’18]:

1 (1,∞)-RLL
input-constrained BEC

2 (1,∞)-RLL
input-constrained BIBO

Dual-Capacity [Thangaraj, ’17]

Dual-Capacity + DP
[Huleihel et al., ’19]

Lower Bounds

Simulation-Based:

1 M-C [Arnold et al., ’06]
2 GBA [Vontobel et al., ’08]
3 Stoch. Approx. [Han, ’15]

Analytical:

1 Asymptotics of BSC, BEC
[Han and Marcus, ’09]
[Li and Han, ’18]

2 Markov inputs for BSC
[Zehavi and Wolf, ’88]

3 General input-driven
(this paper)
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Key Ideas

Recall:
? Reverse Directed Information:

I (Y N → XN |s0) =
N∑
t=1

I (Y t ;Xt |X t−1, s0)

? (Delayed) Forward Directed Information:

I (XN−1 → Y N |s0) =
N∑
t=1

I (X t−1;Yt |Y t−1, s0)

V. Arvind Rameshwar Bellman meets Shannon: On DP and Capacity Computation



Background
Dynamic Programming Framework

Bounds for FSCs Without Feedback
Numerical Results for FSCs With Feedback

System Model
Ideas and Directions
Dynamic Programming Formulation
Single-Letterization
Applications

Key Ideas

Recall:
? Reverse Directed Information:

I (Y N → XN |s0) =
N∑
t=1

I (Y t ;Xt |X t−1, s0)

? (Delayed) Forward Directed Information:

I (XN−1 → Y N |s0) =
N∑
t=1

I (X t−1;Yt |Y t−1, s0)

V. Arvind Rameshwar Bellman meets Shannon: On DP and Capacity Computation



Background
Dynamic Programming Framework

Bounds for FSCs Without Feedback
Numerical Results for FSCs With Feedback

System Model
Ideas and Directions
Dynamic Programming Formulation
Single-Letterization
Applications

Ideas (Contd. . .)

Theorem (Conservation Law (Massey, ‘05))

I (XN ;Y N |s0) = I (Y N → XN |s0) + I (XN−1 → Y N |s0)

≥ I (Y N → XN |s0)

Can we massage this LB into a computable expression?

Yes!
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Steps Towards DP Formulation

Step 1:

I (XN ;Y N |s0) ≥ I (Y N → XN |s0)

≥
N∑
t=1

I (Xt , St−1;Yt |X t−1, s0) [Input-driven channel]
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C = lim
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max
{Q(xt |x t−1,s0)}Nt=1

1

N
I (XN ;Y N |s0)
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t=1

I (Xt ,St−1;Yt |X t−1, s0)
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Lower Bound as a DP Problem

C ≥ sup
{Q(xt |st−1)}

lim inf
N→∞

1

N

N∑
t=1

I (Xt ,St−1;Yt |X t−1, s0)

DP Notation Our Instance

State zt−1 P(st−1|x t−1)

Action ut Q(xt |st−1)

Disturbance wt xt
Reward g(zt−1, ut) I (Xt ,St−1;Yt |x t−1, s0)
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Remarks on Simplifying the DP Approach

It is possible to show that under some mild conditions,

C ≥ sup
{Q(x |s)∈P}

I (X ;Y |S), where

P ,
{
{Q(x |s)} : M.C. on S induced by Q is aperiodic and

has a unique stationary distribution
}
.

Derived lower bound can be achieved directly by random
coding, where the inputs are generated according to
Q∗(xi |si−1) (where Q∗ ∈ P maximizes I (X ;Y |S)), and the
decoder performs ML decoding.
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Remarks on the BEC(ε)

For the BEC(ε) with an input constraint presented by an
irreducible deterministic graph on S,

I (X ;Y |S) = H(X |S)− H(X |Y ,S)

= H(X |S)− εH(X |Y =?,S)

= H(X |S)(1− ε).

Hence, sup{Q(x |s)∈P} I (X ;Y |S) = C0(1− ε), where C0 is the
noiseless capacity of the input-constraint.
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Application: (d ,∞)-RLL Input-Constrained BEC(ε)

Theorem

The capacity of the (d ,∞)-RLL input-constrained binary erasure
channel with erasure probability ε satisfies

C
BEC(ε)
d ,∞ ≥ Cd ,∞ · (1− ε),

where Cd ,∞ = max
a∈[0,1]

hb(a)
ad+1 is the (noiseless) capacity of the

(d ,∞)-RLL constraint.
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Application: (d , k)-RLL Input-Constrained BEC(ε)

Theorem

The capacity of the (d , k)-RLL input-constrained (k <∞) binary
erasure channel with erasure probability ε satisfies

C
BEC(ε)
d ,k ≥ Cd ,k · (1− ε),

where Cd ,k = max
ad ,...,ak−1

k−1∑
i=d

hb(ai )
i−1∏
j=d

(1−aj )

d+1+
k−1∑
i=d

i∏
j=d

(1−aj )
is the (noiseless) capacity

of the (d , k)-RLL constraint.
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Plots: (1,∞)-RLL Input-Constrained BEC(ε)
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Figure: Comparison of our lower bound with the feedback capacity and
dual-capacity upper bounds.
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Application: (d , k)-RLL Input-Constrained BSC(p)

Theorem

The capacity of the (d , k)-RLL input-constrained (k <∞) binary
symmetric channel with cross-over probability p satisfies

C
BSC(p)
d ,k ≥ max

ad ,...,ak−1∈[0,1]

k−1∑
i=d

(
hb(aip + āi p̄)− hb(p)

) i−1∏
j=d

(1− aj)

d + 1 +
k−1∑
i=d

i∏
j=d

(1− aj)

,

where ᾱ := 1− α.
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Plots: (0, k)-RLL Input-Constrained BSC(p)

Figure: Our lower bounds for the (0, 1), (0, 2) and (0, 3)-RLL
input-constrained BSC(p).
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Application: (d ,∞)-RLL Input-Constrained BSC(p)

Theorem

The capacity of the (d ,∞)-RLL input-constrained binary
symmetric channel with cross-over probability p obeys

C
BSC(p)
d ,∞ ≥ max

a∈[0,1]

hb(ap + āp̄)− hb(p)

ad + 1
,

where ᾱ := 1− α.
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Plots: (d ,∞)-RLL Input-Constrained BSC(p)

Figure: Our lower bounds for the (1,∞), (2,∞), (3,∞)-RLL
input-constrained BSC(p).
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Plots: (1,∞)-RLL Input-Constrained BSC(p)

Figure: Comparison of our lower bound with the feedback capacity and
dual-capacity upper bounds.
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Further Work

Deriving efficient coding schemes that meet the lower bounds.

Improving our lower bound by estimating delayed forward
directed information at the input distribution that achieves
our lower bound.

Extending our lower bound to 2D input-constrained DMCs.
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The Setup

Unifilar FSC with feedback:

P(yn, sn|xn, s0) =
n∏

i=1

P(yi |xi , si−1)1{si = Θ(si−1, xi , yi )},

where the inputs xi ∼ P(xi |x i−1, y i−1, s0).
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NAND Flash Memory Channel with ICI

In the 1D ICI model,
high voltages in neighbour cells

w.p. ε→ high voltage in victim
cell

Channel model ([Li, Han, Siegel, ’19]):

P(Y n = yn | X n
−1 = xn−1) =

n∏
i=1

P(Yi = yi | X i
i−2 = x ii−2), where

P(Yi = 1 | X i
i−2 = x ii−2) =


1, if xi−1 = 1,

0, if xi−1 = 0, and

x ii−2 6= (1, 0, 1),

ε, if x ii−2 = (1, 0, 1).

The flash memory channel is connected and unifilar.
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Feedback Capacity Expression

Theorem (Permuter, Cuff, Van Roy, Weissman, ’08)

The feedback capacity of a connected unifilar FSC when the initial
state, s0, is known at the encoder and decoder can be expressed as:

C fb = sup
{P(xt |st−1,y t−1)}t≥1

lim inf
N→∞

1

N

N∑
t=1

I (Xt , St−1;Yt | Y t−1),

where P(xt | y t−1, x t−1, st−1) = P(xt | st−1, y
t−1), for t ≥ 1.

Was also shown to be amenable to formulation as the optimal
average reward of an infinte-horizon average-reward DP problem
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DP Formulation

C fb = sup
{P(xt |st−1,y t−1)}t≥1

lim inf
N→∞

1

N

N∑
t=1

I (Xt ,St−1;Yt | Y t−1)

DP Notation Our Instance

State zt−1 P(st−1|y t−1)

Action ut P(xt |st−1, y
t−1)

Disturbance wt yt
Reward g(zt−1, ut) I (Xt ,St−1;Yt |y t−1)
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Numerical Evaluation
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Figure: Feedback capacity as a function of ε,
obtained by numerical evaluation of the DP
problem.

Figure: Graph of DP
states under optimal
policy.

Numerical evaluations are close to best known upper bounds from
[Sabag et al., ’16]
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Deterministic Flash Memory Channel (ε = 1)

Easy observation: C fb(1) = C (1), since the encoder knows yt
as a function of x tt−2, as soon as xt is determined.

From numerical evaluations of single-letter upper bound from
[Sabag et al., ’16], C fb(1) / 0.8114.

Can we design a simple coding scheme that meets this upper
bound?
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Constrained Coding Scheme

Consider the constraint, Sno-101, that forbids the contiguous
101 pattern, with deterministic presentation (having adjacency
matrix G ) shown below:

By standard results, noiseless capacity,

cap(Sno-101) = log(λG ) [λG → largest eigenvalue of G ]

≈ 0.8114.

Hence, C fb(1) = C (1) ≈ 0.8114.
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Thank You!
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