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Channel Models and Constraints

▶ Consider the setting of the transmission of information across input-constrained binary-input channels.

▶ We work with both stochastic and adversarial noise models.

▶ The constraints we work with find application in a number of domains:

1. Runlength-limited (RLL) constraints: Alleviate ISI in
magneto-optical recording

. . . 0 1 0 0 0 1 0 0 0 0 0 1 0 0 . . . ←→

2. Subblock composition constraints: Aid in
energy-harvesting in communication

3. Charge constraints: Ensure spectral nulls
(DC-freeness) in frequency spectrum

Explicit Codes over RLL Input-Constrained Binary Memoryless Symmetric (BMS) Channels

▶ Our interest is in the (d ,∞)-RLL constraint, i.e., there must be at least d 0s between successive 1s.

Example: When d = 2,

1 0 0 0 1 0 0 0 0 1 0 0 1 ✓
1 0 0 1 0 1 0 0 0 1 0 0 1 X

▶ Examples of BMS channels:

BSC with crossover probability p BEC with erasure probability ϵ

▶ We construct coding schemes, using Reed-Muller (RM) codes of rate R, over such input-constrained BMS channels of unconstrained capacity C ∈ (0, 1).

Rates achievable, when d = 1, if R < C Rates achievable, when d = 2, if R < C Rate bounds over the BEC(ϵ), when d = 1, using a canonical
sequence of RM codes [RCC← Random Constrained Codes]

Computing the Sizes of Constrained Subcodes of General Linear Codes

▶ Using a trick from Boolean Fourier analysis, we convert the problem into a question on the structure of the dual code:

N(C;A) =
∑

x∈{0,1}n
1{x ∈ A} · 1{x ∈ C}

(Plancherel ′s)
= 2n ·

∑
s∈{0,1}n

1̂A(s) · 1̂C(s) = |C| ·
∑
s∈C⊥

1̂A(s). [{0, 1}n ⊇ A ← Set of constrained sequences]

▶ For many constraints, the Fourier transform 1̂A is computable!

1. (d ,∞)-RLL constraint (Sd):

Theorem: For n ≥ d + 2 and for
s = (s1, . . . , sn) ∈ {0, 1}n, it holds that

1̂Sd
(n)

(s) = c1·1̂Sd
(n−1) (

sn
2

)
+c2(s1)·1̂Sd

(n−d−1) (
sn
d+2

)
,

for c1, c2(s1) ∈ R.

2. Subblock composition constraint (Cp
z ):

Theorem: For s ∈ {0, 1}n with
s = (s1 | s2 | . . . | sp), we have that

2n · 1̂Cp
z (s) =

p∏
ℓ=1

K (n/p)
z︸ ︷︷ ︸

Krawtchouk poly.

(w(sℓ)).

3. 2-charge constraint (S2):

Theorem: There exists a vector space V such that
for s ∈ V ,

1̂S2(s) = (−1)δ(s) · 2⌊
n
2⌋−n,

and 1̂S2(s) = 0, otherwise, with δ(s) ∈ {0, 1}.

Upper Bounds on the Sizes of Constrained Codes Over Adversarial Channels

▶ The bit-flip error-correcting capability (with zero-error) of (constrained) codes is determined by the minimum Hamming distance, d .
▶ We propose a version of Delsarte’ linear program for constrained systems, for upper bounding the sizes of constrained codes with a prescribed d .
▶ Our bounds beat the state-of-the-art generalized sphere packing bounds of Fazeli, Vardy, and Yaakobi (2015).

maximize
f : {0,1}n→R

∑
x∈{0,1}n

f (x) (Obj′)

subject to:

f (x) ≥ 0, ∀ x ∈ {0, 1}n, (D1)

f̂ (s) ≥ 0, ∀ s ∈ {0, 1}n, (D2)

f (x) = 0, if 1 ≤ w(x) ≤ d − 1, (D3)

f (0n) ≤ val(Del(n, d)), (D4)

f (x) ≤ 2n · (1A ⋆ 1A)(x), ∀ x ∈ {0, 1}n. (D5)

▶ Our LP Del(n, d ;A) is given on the left, for any
constraint represented by A ⊆ {0, 1}n.
▷ Delsarte’s (unconstrained) LP is Del(n, d).

▶ Our upper bound is precisely val(Del(n, d ;A))1/2.

▶ Del(n, d ;A) can be “symmetrized” to yield an LP
with much smaller numbers of variables+constraints
(sometimes only polynomially many!)

▶ It holds that

val(Del(n, d ;A))1/2 ≤ min{|A|, val(Del(n, d))}.

d Del(n = 13, d ;S2) GenSph(n = 13, d ;S2) Del(n = 13, d)

3 45.255 64 512

4 45.255 64 292.571

5 22.627 64 64

6 17.889 64 40

7 5.657 32 8

8 4.619 32 5.333

9 2.828 16 3.333

10 2.619 16 2.857
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