Codes for Input-Constrained Channels

V. Arvind Rameshwar Navin Kashyap

Department of ECE, Indian Institute of Science

Channel Models and Constraints

- Consider the setting of the transmission of information across input-constrained binary-input channels.
- We work with both stochastic and adversarial noise models.

► The constraints we work with find application in a number of domains:

1. Runlength-limited (RLL) constraints: Alleviate ISI in magneto-optical recording

2. Subblock composition constraints: Aid in energy-harvesting in communication

3. Charge constraints: Ensure spectral nulls (DC-freeness) in frequency spectrum

Explicit Codes over RLL Input-Constrained Binary Memoryless Symmetric (BMS) Channels

• Our interest is in the (d, ∞) -RLL constraint, i.e., there must be at least d 0s between successive 1s. Example: When d = 2,

BSC with crossover probability p

1 - p

BEC with erasure probability ϵ

 \triangleright We construct coding schemes, using Reed-Muller (RM) codes of rate R, over such input-constrained BMS channels of unconstrained capacity $C \in (0, 1)$.

Computing the Sizes of Constrained Subcodes of General Linear Codes

- Using a trick from Boolean Fourier analysis, we convert the problem into a question on the structure of the dual code:
 - $N(\mathcal{C};\mathcal{A}) = \sum_{\mathsf{x} \in \{0,1\}^n} \mathbb{1}\{\mathsf{x} \in \mathcal{A}\} \cdot \mathbb{1}\{\mathsf{x} \in \mathcal{C}\} \stackrel{(Plancherel's)}{=} 2^n \cdot \sum_{\mathsf{s} \in \{0,1\}^n} \widehat{\mathbb{1}_{\mathcal{A}}}(\mathsf{s}) \cdot \widehat{\mathbb{1}_{\mathcal{C}}}(\mathsf{s}) = |\mathcal{C}| \cdot \sum_{\mathsf{s} \in \mathcal{C}^{\perp}} \widehat{\mathbb{1}_{\mathcal{A}}}(\mathsf{s}). \qquad [\{0,1\}^n \supseteq \mathcal{A} \leftarrow \text{Set of constrained sequences}]$
- For many constraints, the Fourier transform $\widehat{\mathbb{1}_{A}}$ is computable!

1. (d, ∞) -RLL constraint (S^d) : Theorem: For $n \ge d + 2$ and for $\mathbf{s} = (s_1, \dots, s_n) \in \{0, 1\}^n$, it holds that $\widehat{\mathbb{1}_{S^d}}^{(n)}(\mathbf{s}) = c_1 \cdot \widehat{\mathbb{1}_{S^d}}^{(n-1)}(s_2^n) + c_2(s_1) \cdot \widehat{\mathbb{1}_{S^d}}^{(n-d-1)}(s_{d+2}^n)$, for $c_1, c_2(s_1) \in \mathbb{R}$.

2. Subblock composition constraint (C_z^p) : Theorem: For $\mathbf{s} \in \{0, 1\}^n$ with $\mathbf{s} = (\mathbf{s}_1 \mid \mathbf{s}_2 \mid \dots \mid \mathbf{s}_p)$, we have that $2^n \cdot \widehat{\mathbb{1}_{C_z^p}}(\mathbf{s}) = \prod_{\ell=1}^p \underbrace{\mathcal{K}_z^{(n/p)}}_{\text{Krawtchouk poly.}}(w(\mathbf{s}_\ell)).$

3. 2-charge constraint (S_2) :

Theorem: There exists a vector space V such that for $s \in V$,

$$\widehat{\mathbb{1}_{S_2}}(\mathbf{s}) = (-1)^{\delta(\mathbf{s})} \cdot 2^{\lfloor \frac{n}{2} \rfloor - n},$$

and $\widehat{\mathbb{1}_{S_2}}(\mathbf{s}) = \mathbf{0}$, otherwise, with $\delta(\mathbf{s}) \in \{\mathbf{0}, \mathbf{1}\}.$

{vrameshwar,nkashyap}@iisc.ac.in

Upper Bounds on the Sizes of Constrained Codes Over Adversarial Channels

▶ The bit-flip error-correcting capability (with zero-error) of (constrained) codes is determined by the minimum Hamming distance, d.

- ▶ We propose a version of Delsarte' linear program for constrained systems, for upper bounding the sizes of constrained codes with a prescribed *d*.
- ▶ Our bounds beat the state-of-the-art generalized sphere packing bounds of Fazeli, Vardy, and Yaakobi (2015).

			Our LP Del $(n, d; A)$ is given on the left, for any constraint represented by $A \subseteq \{0, 1\}^n$.	d	$Del(n = 13, d; S_2)$	$GenSph(n = 13, d; S_2)$	Del(n=13,d)
maximize $f: \{0,1\}^n \to \mathbb{R}$ $\sum_{x \in \{0,1\}^n} f(x)$	(Obj′)		\triangleright Delsarte's (unconstrained) LP is Del(n, d) .	3	45.255	64	512
$x \in \{0,1\}^{\prime\prime}$			Our upper bound is precisely val($Del(n, d; A)$) ^{1/2} .	4	45.255	64	292.571
$f(x) > 0 \forall x \in [0, 1]^n$	(D1)		Del(n , d ; A) can be "symmetrized" to yield an LP with much smaller numbers of variables+constraints (sometimes only polynomially many!)	5	22.627	64	64
$f(\mathbf{x}) \geq 0, \forall \mathbf{x} \in \{0, 1\},$	(D1)			6	17.889	64	40
$f(\mathbf{s}) \geq 0, \ \forall \ \mathbf{s} \in \{0, 1\}^n,$	(D2)	D2) D3)		7	5.657	32	8
$f(\mathbf{x}) = 0, \text{ if } 1 \leq w(\mathbf{x}) \leq d-1,$	(D3)			8	4.619	32	5.333
$f(0^n) \leq \operatorname{val}(\operatorname{Del}(n, d)),$	(D4)		It holds that	9	2.828	16	3.333
$f(x) \leq 2^n \cdot (\mathbb{1}_{\mathcal{A}} \star \mathbb{1}_{\mathcal{A}})(x), \ \forall \ x \in \{0,1\}^n$	'. (D5)	5)	$val(Del(n,d;\mathcal{A}))^{1/2} \leq \min\{ \mathcal{A} , val(Del(n,d))\}.$	10	2.619	16	2.857

This work was supported in part by a Qualcomm Innovation Fellowship (QIF) India 2022.