Codes for Input-Constrained Channels

V. Arvind Rameshwar Navin Kashyap

Department of ECE, Indian Institute of Science

Channel Models and Constraints

- Consider the setting of the transmission of information across input-constrained binary-input channels.
- We work with both stochastic and adversarial noise models.

- The constraints we work with find application in a number of domains:

1. Runlength-limited (RLL) constraints: Alleviate ISI in magneto-optical recording
$\ldots 01000100000100 \ldots \longleftrightarrow \Omega$
2. Subblock composition constraints: Aid in energy-harvesting in communication
3. Charge constraints: Ensure spectral nulls (DC-freeness) in frequency spectrum
 (0) $\underset{1}{\stackrel{0}{\leftrightarrows}} \underset{1}{\stackrel{0}{4}}(2)$

Explicit Codes over RLL Input-Constrained Binary Memoryless Symmetric (BMS) Channels

Our interest is in the (d, ∞)-RLL constraint, i.e., there must be at least $d 0 \mathrm{~s}$ between successive 1 s .
Example: When $d=2$,
1000100001001 $1001010001001 \times$

- Examples of BMS channels:

BSC with crossover probability $p \quad$ BEC with erasure probability ϵ

- We construct coding schemes, using Reed-Muller (RM) codes of rate R, over such input-constrained BMS channels of unconstrained capacity $C \in(\mathbf{0}, \mathbf{1})$.

Rates achievable, when $d=1$, if $R<C$

Rates achievable, when $d=2$, if $R<C$

Rate bounds over the $\operatorname{BEC}(\epsilon)$, when $d=1$, using a canonical sequence of RM codes $\quad[R C C \leftarrow$ Random Constrained Codes]

Computing the Sizes of Constrained Subcodes of General Linear Codes

- Using a trick from Boolean Fourier analysis, we convert the problem into a question on the structure of the dual code:

$$
N(\mathcal{C} ; \mathcal{A})=\sum_{x \in\{0,1\}^{n}} \mathbb{1}\{x \in \mathcal{A}\} \cdot \mathbb{1}\{x \in \mathcal{C}\}^{(\text {Plancherel's) }}=2^{n} \cdot \sum_{s \in\{0,1\}^{n}} \widehat{\mathbb{1}_{\mathcal{A}}}(\mathrm{s}) \cdot \widehat{\mathbb{1}_{\mathcal{C}}}(\mathrm{s})=|\mathcal{C}| \cdot \sum_{\mathrm{s} \in \mathcal{C}^{\perp}} \widehat{\mathbb{1}_{\mathcal{A}}}(\mathrm{s}) . \quad\left[\{0,1\}^{n} \supseteq \mathcal{A} \leftarrow \text { Set of constrained sequences }\right]
$$

- For many constraints, the Fourier transform $\widehat{1_{\mathcal{A}}}$ is computable!

1. (d, ∞)-RLL constraint $\left(S^{d}\right)$:

Theorem: For $n \geq d+2$ and for
$\mathrm{s}=\left(s_{1}, \ldots, s_{n}\right) \in\{0,1\}^{n}$, it holds that
${\widehat{1_{S^{d}}}}^{(n)}(\mathrm{s})=c_{1} \cdot \widehat{\mathbb{1}_{S^{d}}}(n-1)\left(s_{2}^{n}\right)+c_{2}\left(s_{1}\right) \cdot \widehat{\mathbb{1}_{S^{d}}}(n-d-1)\left(s_{d+2}^{n}\right)$,
for $c_{1}, c_{2}\left(s_{1}\right) \in \mathbb{R}$.
2. Subblock composition constraint (C_{z}^{p}):

Theorem: For $s \in\{\mathbf{0}, \mathbf{1}\}^{n}$ with
$\mathrm{s}=\left(\mathrm{s}_{1}\left|\mathrm{~s}_{2}\right| \ldots \mid \mathrm{s}_{p}\right)$, we have that

$$
2^{n} \cdot \widehat{1_{C_{2}^{p}}^{p}}(\mathbf{s})=\prod_{\ell=1}^{p} \underbrace{K_{z}^{(n / p)}}_{\text {Krawtchouk poly. }}\left(w\left(\mathbf{s}_{\ell}\right)\right) .
$$

3. 2-charge constraint $\left(S_{2}\right)$:

Theorem: There exists a vector space V such that for $s \in V$,

$$
\widehat{\mathbb{1}_{S_{2}}}(\mathrm{~s})=(-1)^{\delta(s)} \cdot 2\left\lfloor\frac{n}{2}\right\rfloor-n,
$$

and $\widehat{\mathbb{1 s}_{2}}(\mathbf{s})=0$, otherwise, with $\delta(\mathbf{s}) \in\{0,1\}$.

Upper Bounds on the Sizes of Constrained Codes Over Adversarial Channels

- The bit-flip error-correcting capability (with zero-error) of (constrained) codes is determined by the minimum Hamming distance, d.
- We propose a version of Delsarte' linear program for constrained systems, for upper bounding the sizes of constrained codes with a prescribed d.
- Our bounds beat the state-of-the-art generalized sphere packing bounds of Fazeli, Vardy, and Yaakobi (2015).
$\underset{f:\{0,\}^{n} \rightarrow \mathbb{R}}{\operatorname{maximize}} \sum_{x \in\{0,1\}^{n}} f(x)$
subject to:
$f(x) \geq 0, \forall x \in\{0,1\}^{n}$,
$\widehat{f}(\mathrm{~s}) \geq 0, \forall \mathrm{~s} \in\{0,1\}^{n}$,
$f(x)=0$, if $1 \leq w(x) \leq d-1$,
$f\left(0^{n}\right) \leq \operatorname{val}(\operatorname{Del}(n, d))$,
$f(x) \leq 2^{n} \cdot\left(\mathbb{1}_{\mathcal{A}} \star \mathbb{1}_{\mathcal{A}}\right)(x), \forall x \in\{0,1\}^{n}$.
$f(x) \leq 2^{n} \cdot\left(\mathbb{1}_{\mathcal{A}} \star \mathbb{1}_{\mathcal{A}}\right)(x), \forall x \in\{0,1\}^{n}$.
- Our LP $\operatorname{Del}(n, d ; \mathcal{A})$ is given on the left, for any constraint represented by $\mathcal{A} \subseteq\{0,1\}^{n}$.
\triangleright Delsarte's (unconstrained) LP is $\operatorname{Del}(n, d)$.
- Our upper bound is precisely val $(\operatorname{Del}(n, d ; \mathcal{A}))^{1 / 2}$.

This work was supported in part by a Qualcomm Innovation Fellowship (QIF) India 2022. (D2) with much smaller numbers of variables+constraints
(D3) (sometimes only polynomially many!)
(D4) $>$ It holds that
(D5)

$$
\operatorname{val}(\operatorname{Del}(n, d ; \mathcal{A}))^{1 / 2} \leq \min \{|\mathcal{A}|, \operatorname{val}(\operatorname{Del}(n, d))\}
$$

d	Del $\left(n=13, d ; S_{2}\right)$	$\operatorname{GenSph}\left(n=13, d ; S_{2}\right)$	$\operatorname{Del}(n=13, d)$
3	45.255	64	512
4	45.255	64	292.571
5	22.627	64	64
6	17.889	64	40
7	5.657	32	8
8	4.619	32	5.333
9	2.828	16	3.333
10	2.619	16	2.857

