Sampling-Based Estimates of Weight Enumerators of Reed-Muller Codes

Navin Kashyap
Indian Institute of Science

in collaboration with

V. Arvind Rameshwar Shreyas Jain
Indian Institute of Science IISER, Mohali

ITA 2024

What is the talk about?

Let $\mathcal{C} \subseteq\{0,1\}^{n}$ be a binary Reed-Muller (RM) code.

How many points in the subset $\mathcal{A} \subseteq\{0,1\}^{n}$?

This talk discusses a sampling-based algorithmic approach for obtaining reliable numerical estimates of the above count.

Our specific interest is in sets of the form $\mathcal{A}_{w}=\left\{\mathbf{x}: w_{H}(\mathbf{x})=w\right\}$, and the weight enumerators $A_{w}:=\left|\mathcal{C} \cap \mathcal{A}_{w}\right|$.

Why are weight enumerators useful?

- They bound the probability of ML decoding error over a binary-input memoryless symmetric (BMS) channel:

$$
P_{\text {err }} \leq \sum_{w=1}^{n} A_{w} z^{w}
$$

where $z=\sum_{y} \sqrt{P(y \mid 0) P(y \mid 1)}$ is the Bhattacharyya parameter.

- This connection has been exploited in many papers to analyze the performance of ML/MAP decoding over BMS channels:
[Abbe-Shpilka-Wigderson (T-IT 2015)], [Kudekar et al. (ISIT 2016)],
[Sberlo-Shpilka (arXiv:1811.12447)]

Brief Background

Definition of an RM code

- Fix $m \geq 1$ and consider the points $\left(x_{1}, \ldots, x_{m}\right)$ of the Boolean hypercube $\{0,1\}^{m}$.
- Define $x_{S}:=\prod_{i \in S} x_{i}$, where $S \subseteq[m]$.
- Pick a multilinear polynomial $f=\sum_{s \in \mathcal{S}}{ }^{x_{S}}$, where $\mathcal{S} \subseteq 2^{[m]}$, with

$$
\operatorname{deg}(f)=\max _{S \in \mathcal{S}}|S| \leq r .
$$

- Evaluate f at all points in $\{0,1\}^{m}$ in the (lexicographic) order:

$$
000 \ldots 00 \rightarrow 000 \ldots 01 \rightarrow 000 \ldots 10 \rightarrow \ldots \rightarrow 111 \ldots 11
$$

and call the resultant vector $\operatorname{Eval}(f)$. Here, blocklength $n=2^{m}$.

- The code $\mathrm{RM}(m, r)$ consists of all $\operatorname{Eval}(f)$, where f is as above.

Dimension, $d_{\text {min }}$, and other useful things

- Dimension :

$$
\begin{aligned}
\operatorname{dim}(\operatorname{RM}(m, r)) & =\#\left\{x_{S}: \operatorname{deg}\left(x_{S}\right)=|S| \leq r\right\} \\
& =\sum_{i=0}^{r}\binom{m}{i}=:\binom{m}{\leq r}
\end{aligned}
$$

Dimension, $d_{\text {min }}$, and other useful things

- Dimension :

$$
\begin{aligned}
\operatorname{dim}(\operatorname{RM}(m, r)) & =\#\left\{x_{S}: \operatorname{deg}\left(x_{S}\right)=|S| \leq r\right\} \\
& =\sum_{i=0}^{r}\binom{m}{i}=:\binom{m}{\leq r}
\end{aligned}
$$

- Minimum distance :

$$
d_{\min }(\operatorname{RM}(m, r))=w_{H}\left(\operatorname{Eval}\left(x_{1} x_{2} \ldots x_{r}\right)\right)=2^{m-r}
$$

- Every minimum-weight codeword $\boldsymbol{v} \in \mathrm{RM}(m, r)$ can be expressed as

$$
\boldsymbol{v}=\left(\mathbb{1}_{H}(\boldsymbol{z}): \boldsymbol{z} \in\{0,1\}^{m}\right)
$$

for an $(m-r)$-dimensional affine subspace H of \mathbb{F}_{2}^{m}.

- The minimum-weight codewords span $\mathrm{RM}(m, r)$.

Prior Work on Weight Enumerators of RM Codes

Exact expressions/values

- $\mathrm{RM}(m, 1): A_{0}=A_{2^{m}}=1, A_{2^{m-1}}=2^{m+1}-2$
- RM($m, 2$): Sloane-Berlekamp (1970)
- RM(7,3): Sugino-lenaga-Tokura-Kasami (1971)

RM $(9,3)$: Sugita-Kasami-Fujiwara (1996)
RM(9, 4): Markov-Borissov (2023)

- $\mathrm{RM}(m, r)$: Exact A_{w} known for $w<2.5 \cdot 2^{m-r}$ Kasami-Tokura (1970), Kasami-Tokura-Azumi (1976)

Analytical bounds

- Kaufman-Lovett-Porat (2012), Sberlo-Shpilka (2015), Samorodnitsky (2020), Rao-Sprumont (2022):
Bounds on A_{w} via Fourier analysis on the hypercube

Algorithms

- Sarwate (1973): Recursive algorithm using Plotkin decomposition

Weight Spectra of RM Codes

The weight spectrum of a code is the set $\mathcal{W}=\left\{w: A_{w} \neq 0\right\}$.
We will denote the weight spectrum of $\operatorname{RM}(m, r)$ by $\mathcal{W}_{m, r}$.

- McEliece (1972): $\mathcal{W}_{m, r} \subset\left\{\right.$ multiples of $\left.2^{\left\lfloor\frac{m-1}{r}\right\rfloor}\right\}$
- Carlet and Solé (2023):
- $\mathcal{W}_{m, m-3}$ for $m \geq 6$, and $\mathcal{W}_{m, m-4}$ for $m \geq 8$
- $\mathcal{W}_{8,3}$ and $\mathcal{W}_{9,4}$
- Carlet (2023): $\mathcal{W}_{m, m-5}$ for $m \geq 10$

What are we shooting for?

Let $\mathcal{C} \subseteq\{0,1\}^{n}$ be a binary Reed-Muller code.

- Exact computation of A_{w} is hard (algebraically) and computationally intractable (numerically)

What are we shooting for?

Let $\mathcal{C} \subseteq\{0,1\}^{n}$ be a binary Reed-Muller code.

How many points in the subset $\mathcal{A} \subseteq\{0,1\}^{n}$?

- Exact computation of A_{w} is hard (algebraically) and computationally intractable (numerically)
- Can we efficiently (poly. time?) obtain an estimate \widehat{A}_{w}, such that with high probability,

$$
A_{w} \in\left[(1-\epsilon) A_{w},(1+\epsilon) A_{w}\right],
$$

for some arbitrarily small $\epsilon>0$?

Sampling-Based Algorithms

A naïve first pass

- Suppose that we try to construct A_{w} via "rejection sampling":

1. Draw L uniformly random codewords from $\operatorname{RM}(m, r)$.
2. Set $\widehat{A}_{w}=|\mathrm{RM}(m, r)| \times\left(\frac{\#\{\text { samples of weight } w\}}{L}\right)$.

A naïve first pass

- Suppose that we try to construct A_{w} via "rejection sampling":

1. Draw L uniformly random codewords from $\mathrm{RM}(m, r)$.
2. Set $\widehat{A}_{w}=|\operatorname{RM}(m, r)| \times\left(\frac{\#\{\text { samples of weight } w\}}{L}\right)$.

Clearly, for L large, $\widehat{A}_{w} \in\left[(1-\epsilon) A_{w},(1+\epsilon) A_{w}\right]$ w.h.p.

A naïve first pass

- Suppose that we try to construct A_{w} via "rejection sampling":

1. Draw L uniformly random codewords from $\mathrm{RM}(m, r)$.
2. Set $\widehat{A}_{\mathrm{w}}=|\mathrm{RM}(m, r)| \times\left(\frac{\#\{\text { samples of weight } \mathrm{w}\}}{L}\right)$.

$$
\text { Clearly, for } L \text { large, } \widehat{A}_{w} \in\left[(1-\epsilon) A_{w},(1+\epsilon) A_{w}\right] \text { w.h.p. }
$$

- For most weights, A_{w} is exp. smaller than $\mathrm{RM}(m, r)$! see e.g., [Rao and Sprumont (2022)]

Hence, exponentially many (in blocklength n) draws needed (bad)!

Key insight

- Note that $A_{\mathrm{w}}=Z$, the partition function of the distrib. p given by

$$
p(\boldsymbol{x})=\frac{1}{Z} \cdot \mathbb{1}_{\mathcal{C} \cap \mathcal{A}_{w}}(\boldsymbol{x}), \quad \boldsymbol{x} \in\{0,1\}^{n}
$$

Key insight

- Note that $A_{\mathrm{w}}=Z$, the partition function of the distrib. p given by

$$
p(\boldsymbol{x})=\frac{1}{Z} \cdot \mathbb{1}_{\mathcal{C} \cap \mathcal{A}_{\mathrm{w}}}(\boldsymbol{x}), \quad \boldsymbol{x} \in\{0,1\}^{n} .
$$

Hard to sample from p or compute \mathbf{Z}

Key insight

- Note that $A_{\mathrm{w}}=Z$, the partition function of the distrib. p given by

$$
p(\boldsymbol{x})=\frac{1}{Z} \cdot \mathbb{1}_{\mathcal{C} \cap \mathcal{A}_{\mathfrak{w}}}(\boldsymbol{x}), \quad \boldsymbol{x} \in\{0,1\}^{n}
$$

- Consider the following Gibbs distribution p_{β}, for $\beta>0$:

$$
p_{\beta}(\boldsymbol{x})=\frac{1}{Z_{\beta}} \cdot e^{-\beta \cdot E(x)}, \quad x \in \mathcal{C}
$$

where $E(\boldsymbol{x})=\left|w_{H}(\boldsymbol{x})-w\right|$ and $Z_{\beta}=\sum_{\mathbf{c} \in \mathcal{C}} e^{-\beta \cdot E(x)}$.

Key insight

- Note that $A_{\mathrm{w}}=Z$, the partition function of the distrib. p given by

$$
p(\boldsymbol{x})=\frac{1}{Z} \cdot \mathbb{1}_{\mathcal{C} \cap \mathcal{A}_{\mathfrak{w}}}(\boldsymbol{x}), \quad \boldsymbol{x} \in\{0,1\}^{n}
$$

- Consider the following Gibbs distribution p_{β}, for $\beta>0$:

$$
p_{\beta}(x)=\frac{1}{Z_{\beta}} \cdot e^{-\beta \cdot E(x)}, \quad x \in \mathcal{C}
$$

where $E(\boldsymbol{x})=\left|w_{H}(\boldsymbol{x})-w\right|$ and $Z_{\beta}=\sum_{\mathbf{c} \in \mathcal{C}} e^{-\beta \cdot E(x)}$.

- Importantly,

$$
\begin{aligned}
\lim _{\beta \rightarrow \infty} p_{\beta}(\boldsymbol{x}) & =p(\boldsymbol{x}), \quad \text { and } \\
\lim _{\beta \rightarrow \infty} Z_{\beta} & =Z .
\end{aligned}
$$

Key insight

- Note that $A_{\mathrm{w}}=Z$, the partition function of the distrib. p given by

$$
p(\boldsymbol{x})=\frac{1}{Z} \cdot \mathbb{1}_{\mathcal{C} \cap \mathcal{A}_{w}}(\boldsymbol{x}), \quad \boldsymbol{x} \in\{0,1\}^{n} .
$$

- Consider the following Gibbs distribution p_{β}, for $\beta>0$:

$$
p_{\beta}(x)=\frac{1}{Z_{\beta}} \cdot e^{-\beta \cdot E(x)}, \quad x \in \mathcal{C}
$$

where $E(\boldsymbol{x})=\left|w_{H}(\boldsymbol{x})-\mathrm{w}\right|$ and $Z_{\beta}=\sum_{\mathbf{c} \in \mathcal{C}} e^{-\beta \cdot E(\mathbf{x})}$.

- Importantly,

$$
\begin{aligned}
\lim _{\beta \rightarrow \infty} p_{\beta}(\boldsymbol{x}) & =p(\boldsymbol{x}), \quad \text { and } \\
\lim _{\beta \rightarrow \infty} Z_{\beta} & =Z .
\end{aligned}
$$

We use $Z_{\beta^{\star}}$, for large β^{\star}, as a "good" approximation to $Z=A_{w}$.

Key insight

- Note that $A_{\mathrm{w}}=Z$, the partition function of the distrib. p given by

$$
p(\boldsymbol{x})=\frac{1}{Z} \cdot \mathbb{1}_{\mathcal{C} \cap \mathcal{A}_{w}}(\boldsymbol{x}), \quad \boldsymbol{x} \in\{0,1\}^{n}
$$

- Consider the following Gibbs distribution p_{β}, for $\beta>0$:

$$
p_{\beta}(x)=\frac{1}{Z_{\beta}} \cdot e^{-\beta \cdot E(x)}, \quad x \in \mathcal{C}
$$

where $E(\boldsymbol{x})=\left|w_{H}(\boldsymbol{x})-w\right|$ and $Z_{\beta}=\sum_{\mathbf{c} \in \mathcal{C}} e^{-\beta \cdot E(x)}$.

- Importantly,

$$
\begin{aligned}
\lim _{\beta \rightarrow \infty} p_{\beta}(\boldsymbol{x}) & =p(\boldsymbol{x}), \quad \text { and } \\
\lim _{\beta \rightarrow \infty} Z_{\beta} & =Z .
\end{aligned}
$$

We next illustrate how to approximately compute $Z_{\beta^{\star}}$.

Counting via sampling - I

The following technique from statistical physics is well-known [Valleau and Card (1972)]:

- Fix a large $\ell>0$ and a "cooling schedule" of β parameters:

$$
0=: \beta_{0}<\beta_{1}<\ldots<\beta_{\ell}=: \beta^{\star}
$$

where $\beta_{i}=\beta_{i-1}+1 / n$, for $1 \leq i \leq \ell$.

Counting via sampling - I

The following technique from statistical physics is well-known [Valleau and Card (1972)]:

- Fix a large $\ell>0$ and a "cooling schedule" of β parameters:

$$
0=: \beta_{0}<\beta_{1}<\ldots<\beta_{\ell}=: \beta^{\star}
$$

where $\beta_{i}=\beta_{i-1}+1 / n$, for $1 \leq i \leq \ell$.

- Write

$$
Z_{\beta^{\star}}=Z_{\beta_{0}} \times \prod_{i=1}^{\ell} \frac{Z_{\beta_{i}}}{Z_{\beta_{i-1}}}
$$

where $Z_{\beta_{0}}=Z_{0}=|\mathcal{C}|$.

Counting via sampling - I

The following technique from statistical physics is well-known [Valleau and Card (1972)]:

- Fix a large $\ell>0$ and a "cooling schedule" of β parameters:

$$
0=: \beta_{0}<\beta_{1}<\ldots<\beta_{\ell}=: \beta^{\star}
$$

where $\beta_{i}=\beta_{i-1}+1 / n$, for $1 \leq i \leq \ell$.

- Write

$$
Z_{\beta^{\star}}=Z_{\beta_{0}} \times \prod_{i=1}^{\ell} \frac{Z_{\beta_{i}}}{Z_{\beta_{i-1}}}
$$

where $Z_{\beta_{0}}=Z_{0}=|\mathcal{C}|$.

- Observe that

$$
\begin{aligned}
\frac{Z_{\beta_{i}}}{Z_{\beta_{i-1}}} & =\frac{1}{Z_{\beta_{i-1}}} \sum_{\mathbf{c} \in \mathcal{C}} \exp \left(-\beta_{i} E(\mathbf{c})\right) \\
& =\mathbb{E}_{p_{\beta_{i-1}}}[\exp (\underbrace{\left(\beta_{i-1}-\beta_{i}\right)}_{=-1 / n} E(\mathbf{c}))] .
\end{aligned}
$$

Counting via sampling - II

$$
Z_{\beta^{\star}}=Z_{\beta_{0}} \times \prod_{i=1}^{\ell} \mathbb{E}_{p_{\beta_{i-1}}}[\exp (-\frac{1}{n} \underbrace{\left|w_{H}(\mathbf{c})-\mathrm{w}\right|}_{=E(\mathbf{c})})]
$$

Suppose that we have black-box access to samples from p_{β}. Then,

1. Estimate $\mathbb{E}_{p_{\beta_{i-1}}}\left[\exp \left(-\frac{1}{n} E(\mathbf{c})\right)\right]$ as

$$
Y_{i}=\frac{1}{t} \sum_{j=1}^{t} X_{i, j}
$$

where $X_{i, j} \stackrel{\text { iid }}{\sim} p_{\beta_{i-1}}$ and t is "large".
2. Return $\widehat{Z}_{\beta^{\star}}=Z_{0} \times \prod_{i=1}^{\ell} Y_{i}$.

Counting via sampling - II

$$
Z_{\beta^{\star}}=Z_{\beta_{0}} \times \prod_{i=1}^{\ell} \mathbb{E}_{p_{\beta_{i-1}}}[\exp (-\frac{1}{n} \underbrace{\left|w_{H}(\mathbf{c})-\mathrm{w}\right|}_{=E(\mathbf{c})})]
$$

Suppose that we have black-box access to samples from p_{β}. Then,

1. Estimate $\mathbb{E}_{p_{\beta_{i-1}}}\left[\exp \left(-\frac{1}{n} E(\mathbf{c})\right)\right]$ as

$$
Y_{i}=\frac{1}{t} \sum_{j=1}^{t} X_{i, j}
$$

where $X_{i, j} \stackrel{\text { iid }}{\sim} p_{\beta_{i-1}}$ and t is "large".
2. Return $\widehat{Z}_{\beta^{\star}}=Z_{0} \times \prod_{i=1}^{\ell} Y_{i}$.

How to sample from p_{β} ?
How large is ℓ ?
How large is t ?

How to sample from p_{β} ?

1: procedure MCMC-SAMPLER
2: \quad Start at an arbitrary codeword $\boldsymbol{c}_{0} \in \mathcal{C}$.
3: \quad Fix a large epoch length τ.
4: \quad for $i=1: \tau$ do
Sample a uniformly random min.-wt. codeword $\boldsymbol{c}^{\#}$, and set $\boldsymbol{c}_{\text {proposed }} \leftarrow \boldsymbol{c}_{i-1}+\boldsymbol{c}^{\#}$
6: $\quad \boldsymbol{c}_{i} \leftarrow \begin{cases}\boldsymbol{c}_{\text {proposed }} & \text { w.p. } p_{\text {accept }} \\ \boldsymbol{c}_{i-1} & \text { w.p. } 1-p_{\text {accept }}\end{cases}$
7: \quad Output \boldsymbol{c}_{τ}.
$p_{\text {accept }}:=\min \left(1, \exp \left(-\beta\left(E\left(\mathbf{c}_{\text {proposed }}\right)-E\left(\mathbf{c}_{(i-1)}\right)\right)\right)\right)$

How to sample from p_{β} ?

procedure MCMC-SAMPLER

Start at an arbitrary codeword $\boldsymbol{c}_{0} \in \mathcal{C}$.
Fix a large epoch length τ.
for $i=1: \tau$ do
Sample a uniformly random min.-wt. codeword $\boldsymbol{c}^{\#}$, and set $\boldsymbol{c}_{\text {proposed }} \leftarrow \boldsymbol{c}_{i-1}+\boldsymbol{c}^{\#}$

$$
\text { 6: } \quad \boldsymbol{c}_{i} \leftarrow \begin{cases}\boldsymbol{c}_{\text {proposed }} & \text { w.p. } p_{\text {accept }} \\ \boldsymbol{c}_{i-1} & \text { w.p. } 1-p_{\text {accept }}\end{cases}
$$

7: \quad Output \boldsymbol{c}_{τ}.

$$
p_{\text {accept }}:=\min \left(1, \exp \left(-\beta\left(E\left(\mathbf{c}_{\text {proposed }}\right)-E\left(\mathbf{c}_{(i-1)}\right)\right)\right)\right)
$$

Observations:

1. We can efficiently draw unif. random. min.-wt. $\boldsymbol{c}^{\#}$ using the corresp. with $(m-r)$-dimensional affine subspaces.
2. The Metropolis Markov chain above is irreducible (min.-wt. codewords span \mathcal{C}) and has p_{β} as stationary distribution.

How large is ℓ ? How large is t ?

We now provide bounds on the sample complexity of the approx. counting algorithm.

- Setting $t=\Theta\left(n^{3}\right)$, we have [Dyer and Frieze (1991)]

$$
\operatorname{Pr}\left[(1-\epsilon) Z_{\beta^{\star}} \leq \hat{Z}_{\beta^{\star}} \leq(1+\epsilon) Z_{\beta^{\star}}\right] \geq \frac{3}{4}
$$

How large is ℓ ? How large is t ?

We now provide bounds on the sample complexity of the approx. counting algorithm.

- Setting $t=\Theta\left(n^{3}\right)$, we have [Dyer and Frieze (1991)]

$$
\operatorname{Pr}\left[(1-\epsilon) Z_{\beta^{\star}} \leq \hat{Z}_{\beta^{\star}} \leq(1+\epsilon) Z_{\beta^{\star}}\right] \geq \frac{3}{4} .
$$

- Setting $\ell=O(n)$, we get $\quad[\mathrm{A}$. Sinclair, lecture notes (2020)]

$$
\left(1-\delta_{n}\right) Z \leq Z_{\beta^{\star}} \leq\left(1+\delta_{n}\right) Z,
$$

where $\delta_{n} \rightarrow 0$ exponentially quickly.

How large is ℓ ? How large is t ?

We now provide bounds on the sample complexity of the approx. counting algorithm.

- Setting $t=\Theta\left(n^{3}\right)$, we have [Dyer and Frieze (1991)]

$$
\operatorname{Pr}\left[(1-\epsilon) Z_{\beta^{\star}} \leq \widehat{Z}_{\beta^{\star}} \leq(1+\epsilon) Z_{\beta^{\star}}\right] \geq \frac{3}{4}
$$

- Setting $\ell=O(n)$, we get \quad [A. Sinclair, lecture notes (2020)]

$$
\left(1-\delta_{n}\right) Z \leq Z_{\beta^{\star}} \leq\left(1+\delta_{n}\right) Z,
$$

where $\delta_{n} \rightarrow 0$ exponentially quickly.

- Thus, using $\Theta\left(n^{6}\right)$ samples overall, we obtain that

$$
\operatorname{Pr}\left[\left(1-\gamma_{n}\right) A_{w} \leq \widehat{Z}_{\beta^{\star}} \leq\left(1+\gamma_{n}\right) A_{w}\right] \geq \frac{3}{4}
$$

- The constant $3 / 4$ can be improved to $1-\alpha$, for $\alpha>0$ arbit. small, using a "median-of-batches" trick.

Numerical Results - I

Plots of estimated and exact ${ }^{1}$ rates of weight enumerators of $\operatorname{RM}(7,3)$

- The rate of a weight enumerator is $\frac{1}{n} \log _{2} A_{w}$.
${ }^{1}$ from [Sugino-lenaga-Tokura-Kasami (1971)]

Numerical Results - II

Plots of estimated and exact ${ }^{2}$ rates of weight enumerators of $\operatorname{RM}(9,4)$ in the range $80 \leq w \leq 256$

Numerical Results - III

Plot of estimated rates of weight enumerators of $\operatorname{RM}(11,5)$ in the range $512 \leq w \leq 1024$

Weight Spectra of $\operatorname{RM}(10,3)$ and $\operatorname{RM}(10,4)$

Recall that

- For $\mathrm{RM}(m, r), A_{\mathrm{w}}$ for $\mathrm{w}<2.5 \cdot 2^{m-r}$ are known exactly. [Kasami-Tokura (1970)], [Kasami-Tokura-Azumi (1976)]

By symmetry, these are also known for $w>2^{m}-2.5 \cdot 2^{m-r}$.

- $\mathcal{W}_{m, r} \subset\left\{\right.$ multiples of $\left.2^{\left\lfloor\frac{m-1}{r}\right\rfloor}\right\} \quad[$ McEliece (1972)]

Weight Spectra of $\mathrm{RM}(10,3)$ and $\mathrm{RM}(10,4)$

Recall that

- For $\mathrm{RM}(m, r), A_{\mathrm{w}}$ for $\mathrm{w}<2.5 \cdot 2^{m-r}$ are known exactly. [Kasami-Tokura (1970)], [Kasami-Tokura-Azumi (1976)]

By symmetry, these are also known for $w>2^{m}-2.5 \cdot 2^{m-r}$.

- $\mathcal{W}_{m, r} \subset\left\{\right.$ multiples of $\left.2^{\left\lfloor\frac{m-1}{r}\right\rfloor}\right\} \quad[$ McEliece (1972)]

Using our sampling algorithm, we can find witnesses (codewords) that prove the following result.

Theorem
For $(m, r)=(10,3)$ or $(10,4)$, the weight spectrum in the range $2.5 \cdot 2^{m-r} \leq \mathrm{w} \leq 2^{m}-2.5 \cdot 2^{m-r}$ is composed exactly of the multiples of $2^{\left\lfloor\frac{m-1}{r}\right\rfloor}$ in that range.

Open Questions

- For RM(11,5), can our sampling-based estimates be used in conjunction with algebraic methods (such as the MacWilliams' identities) to determine the exact weight enumerators?
- What can we do to improve our estimates at low weights?
- MCMC-based decoders for RM codes?
J.-T. Huang and Y.-H. Kim have recently (GLOBECOM'20, ISIT'23) considered MCMC decoders for linear codes.

