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What is the talk about?

Let C C {0,1}" be a binary Reed-Muller (RM) code.

—
/
/
How many points in the / /

bset A € {0,1}7 / /
subse {0,1} \ f} c /
/ /

/ ——

This talk discusses a sampling-based algorithmic approach for obtaining
reliable numerical estimates of the above count.

Our specific interest is in sets of the form A,, = {x : wy(x) = w},
and the weight enumerators A,, := [C N Ay|.



Why are weight enumerators useful?
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» They bound the probability of ML decoding error over a binary-input
memoryless symmetric (BMS) channel:

n
Por < Auz",
w=1

where z =" \/P(y|0)P(y|1) is the Bhattacharyya parameter.
y

» This connection has been exploited in many papers to analyze the
performance of ML/MAP decoding over BMS channels:
[Abbe-Shpilka-Wigderson (T-IT 2015)], [Kudekar et al. (ISIT 2016)],
[Sberlo-Shpilka (arXiv:1811.12447)]



Brief Background



Definition of an RM code

» Fix m > 1 and consider the points (xi, ..., xny) of the Boolean
hypercube {0,1}™.

> Define xs := []..s Xi, where S C [m].

i€S
» Pick a multilinear polynomial f = ZSeS Xs, where § C 2[ml with

f)= <r.

deg(f) = max|S| < r

» Evaluate f at all points in {0,1}™ in the (lexicographic) order:
000...00 -+ 000...01 —+000...10 = ... — 111...11,

and call the resultant vector Eval(f). Here, blocklength n =2".

» The code RM(m, r) consists of all Eval(f), where f is as above.



Dimension, dni,, and other useful things

» Dimension :

dim(RM(m, r)) = #{xs : deg(xs) =S| < r}

B Z; <T> B (gmr)'



Dimension, dni,, and other useful things

» Dimension :

dim(RM(m, r)) = #r{xs : deg(xs) = |S| < r}
%0)=(2)

» Minimum distance :
dmin(RM(m, r)) = wy(Bval(xix2 ... x,)) =277 ".
» Every minimum-weight codeword v € RM(m, r) can be expressed as
v=(1y(z): z€{0,1}),
for an (m — r)-dimensional affine subspace H of FJ'.

» The minimum-weight codewords span RM(m, r).



Prior Work on Weight Enumerators of RM Codes

Exact expressions/values
> RM(m 1): Ag = Aom =1, A1 =2m+1 2
> 2): Sloane-Berlekamp (1970)

RM(m,
> (7 3): Sugino-lenaga-Tokura-Kasami (1971)
M(9, 3): Sugita-Kasami-Fujiwara (1996)
M(9,4
(

): Markov-Borissov (2023)

» RM(m,r): Exact A, known for w < 2.5.2m~"
Kasami-Tokura (1970), Kasami-Tokura-Azumi (1976)

Analytical bounds

» Kaufman-Lovett-Porat (2012), Sberlo-Shpilka (2015),
Samorodnitsky (2020), Rao-Sprumont (2022):
Bounds on A,, via Fourier analysis on the hypercube

Algorithms
» Sarwate (1973): Recursive algorithm using Plotkin decomposition



Weight Spectra of RM Codes

The weight spectrum of a code is the set W = {w: A, # 0}.

We will denote the weight spectrum of RM(m, r) by W, ,.

> McEliece (1972): Wi, C {multiples of 2L"7/}

» Carlet and Solé (2023):
> Wnm—3 for m>6, and W, m—s for m> 8
4 W8,3 and W974

> Carlet (2023): W m—5 for m > 10

6
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What are we shooting for?
Let C C {0,1}"” be a binary Reed-Muller code.

= 1

How many points in the / /|

subset A € {0,1}"? ‘\ // c //
/
/ /

]

|

|

|

|

/ |

/£ !
/ v

» Exact computation of A, is hard (algebraically) and computationally
intractable (numerically)



What are we shooting for?
Let C C {0,1}"” be a binary Reed-Muller code.

How many points in the

subset A € {0,1}"? ‘\

» Exact computation of A, is hard (algebraically) and computationally
intractable (numerically)

» Can we efficiently (poly. time?) obtain an estimate Ay, such that
with high probability,

Aw € [(1 = )Ay, (1 + €)Ad],

for some arbitrarily small € > 0 7



Sampling-Based Algorithms
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A naive first pass

> Suppose that we try to construct A, via “rejection sampling”:

1. Draw L uniformly random codewords from RM(m, r).

2. Set A = [RM(m, )| x (#ismsstussur )




A naive first pass

> Suppose that we try to construct A, via “rejection sampling”:

1. Draw L uniformly random codewords from RM(m, r).

N # les of weight
2. Set Ay = [RM(m, r)] x (Elmpessfusightn) ),

Clearly, for L large, Ay € [(1 — €)Aw, (1 + €)Ay] w.h.p.



A naive first pass

» Suppose that we try to construct A,, via “rejection sampling”:

1. Draw L uniformly random codewords from RM(m, r).

2. Set A, = [RM(m, r)| x (Elmplessfusightn) ),

Clearly, for L large, A, € [(1 — €)Aw, (1 + €)Ay] w.h.p.

» For most weights, A, is exp. smaller than RM(m, r)!
see e.g., [Rao and Sprumont (2022)]

Hence, exponentially many (in blocklength n) draws needed (bad)!



Key insight
> Note that A, = Z, the partition function of the distrib. p given by

p(x) = % “lena,(x), xe{0,1}".
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Key insight
> Note that A, = Z, the partition function of the distrib. p given by

p(x) = % “lena,(x), xe{0,1}".

Hard to sample from p or compute Z
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Key insight
> Note that A, = Z, the partition function of the distrib. p given by

p(x) = % “lena,(x), xe{0,1}".

> Consider the following Gibbs distribution pg, for 5 > 0:

1
pg(X) = Z ' eiﬁ.E(X)7 X € Ca

where E(x) = |wy(x) —w| and Zg =3 . e PEX.
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Key insight

> Note that A, = Z, the partition function of the distrib. p given by

p(x) = % “lena,(x), xe{0,1}".

> Consider the following Gibbs distribution pg, for 5 > 0:
1
: x €C,
where E(x) = |wy(x) —w| and Zg =3 . e PEX.

> I Y pOI tantly,
Iil 1 p@ X) = p X alld

lim Z; = Z.

B—00
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Key insight

> Note that A, = Z, the partition function of the distrib. p given by

p(x) = % “lena,(x), xe{0,1}".

> Consider the following Gibbs distribution pg, for 5 > 0:

1

,D,B(X) == - eiﬁ.E(x% S Ca
Zs

where E(x) = |wy(x) —w| and Zg =3 . e PEX.

» Importantly,

[3I|_>moo ps(x) = p(x), and
lim Zg=Z.

B—00

We use Z3., for large 5*, as a “good" approximation to Z = A,,.
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Key insight
> Note that A, = Z, the partition function of the distrib. p given by

p(x) = % “Iena,(x), xe{0,1}".

> Consider the following Gibbs distribution pg, for 3 > 0:
1 sER
pa(x)=—=-e , x€C,
Zs

where E(x) = |wy(x) —w| and Zg =3} . e BE(X)
» Importantly,

lim pg(x) = p(x), and

B—00

lim Zg = Z.
Bl—>moo A

We next illustrate how to approximately compute Zg.
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Counting via sampling - |

The following technique from statistical physics is well-known
[Valleau and Card (1972)]:

» Fix a large £ > 0 and a “cooling schedule” of 5 parameters:

022ﬁ0<51<...<ﬂg::ﬂ*,
where 8; = B;_1+1/n, for 1 < i< /.
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Counting via sampling - |
The following technique from statistical physics is well-known
[Valleau and Card (1972)]:

» Fix a large £ > 0 and a “cooling schedule” of 5 parameters:

022ﬁ0<51<...<ﬂg::ﬂ*,
where 8; = B;_1+1/n, for 1 < i< /.
» Write

tz
Zﬁ* = Zﬁo X H Z/@BI ,
= 1

i—

where Zg, = Z5 = |C].
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Counting via sampling - |

The following technique from statistical physics is well-known
[Valleau and Card (1972)]:

» Fix a large £ > 0 and a “cooling schedule” of 5 parameters:

022ﬁ0<51<...<ﬂg:25*,
where 8; = B;_1+1/n, for 1 < i< /.
» Write

tz
Zﬁ* = Zﬁo X H Z/@BI ,
= 1

i—

where Zg, = Z5 = |C].

» Observe that
Zs 1 _ 3.
2= 2 Lo )
=Ep, [exp((Bi—1 — i) E(c))]-

=-1/n




Counting via sampling - Il

Y4

Zse = 23, % [T Ep,, o0l ) — ).
i=1

Suppose that we have black-box access to samples from pg. Then,

1. Estimate E,,  [exp(—%E(c))] as

1 t
Yi=2) X
j=1

iid o "
where X;; ~ pg,_, and t is “large”.

2. Return Zg* =7y X Hfil Y.
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Counting via sampling - Il

Y4

Zse = 23, % [T Ep,, o0l ) — ).
i=1

Suppose that we have black-box access to samples from pg. Then,

1. Estimate E,,  [exp(—%E(c))] as

1 t
Yi=2) X
j=1

iid o "
where X;; ~ pg,_, and t is “large”.

How to sample from pg?
How large is £7

How large is 7

2. Return Zg* =7y X Hfil Y.
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How to sample from pg?

1: procedure MCMC-SAMPLER

2 Start at an arbitrary codeword ¢q € C.
3: Fix a large epoch length 7.
4
5

Y fori=1:7do
Vs e Sample a uniformly random min.-wt.
#
e o codeword ¢#, and set Cproposed < €i—1 + €7
b Cproposed W.P. Paccept
o ° 6: c; — prop P
Ci—1 W.p. 1- Paccept

weight-w codeword !

7 Output c,.

Paccept = min (17 exp(_B(E(cproposed) - E(c(i—l)))))



How to sample from pg?

1: procedure MCMC-SAMPLER

2 Start at an arbitrary codeword ¢q € C.
3: Fix a large epoch length 7.
4
5

Y fori=1:7do
Vs e Sample a uniformly random min.-wt.
#
e A codeword ¢#, and set Cproposed < €i—1 + €7
o« & o
° b = 6: ci Cproposed W.P. Paccept
Ci—1 W.p. 1- Paccept
7 Output c,.
Paccept ‘= min (17 exp(_B(E(cproposed) - E(c(i—l)))))
Observations:

1. We can efficiently draw unif. random. min.-wt. c* using the
corresp. with (m — r)-dimensional affine subspaces.

2. The Metropolis Markov chain above is irreducible (min.-wt.
codewords span C) and has pg as stationary distribution.



How large is /7 How large is t?

We now provide bounds on the sample complexity of the approx.

counting algorithm.

» Setting t = O(n3), we have [Dyer and Frieze (1991)]

= 3
Pri(1 —€)Zp < Zg« < (1+¢€)Zs:] > e
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How large is /7 How large is t?

We now provide bounds on the sample complexity of the approx.
counting algorithm.

» Setting t = O(n3), we have [Dyer and Frieze (1991)]

3
PI’[(]. — G)Zﬁ* < Zﬁ* < (1 + E)Zﬁ*] Z

» Setting ¢ = O(n), we get [A. Sinclair, lecture notes (2020)]
(1-6,)Z < Zg < (146,)Z,

where §, — 0 exponentially quickly.
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How large is /7 How large is t?

We now provide bounds on the sample complexity of the approx.
counting algorithm.

» Setting t = O(n3), we have [Dyer and Frieze (1991)]

3
PI’[(]. — G)Zﬁ* < Zﬁ* < (1 + E)Zﬁ*] Z

» Setting ¢ = O(n), we get [A. Sinclair, lecture notes (2020)]
(1-6,)Z < Zg < (146,)Z,
where §, — 0 exponentially quickly.

» Thus, using ©(n®) samples overall, we obtain that

Prl(1 — v)Aw < Zﬁ* (1 +v)Au] >

Blw

» The constant 3/4 can be improved to 1 — «, for a > 0 arbit. small,

using a “median-of-batches” trick.

13/18



Numerical Results - |
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Plots of estimated and exact’ rates of weight enumerators of RM(7, 3)

» The rate of a weight enumerator is % log, Aw.

1from [Sugino-lenaga-Tokura-Kasami (1971)]

14 /18



Numerical Results - 1l
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Plots of estimated and exact? rates of weight enumerators of RM(9, 4)
in the range 80 < w < 256

2from [Markov-Borissov (2023)]
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Numerical Results - Il
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Plot of estimated rates of weight enumerators of RM(11, 5)
in the range 512 < w < 1024
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Weight Spectra of RM(10, 3) and RM(10, 4)

Recall that

» For RM(m,r), Ay for w < 2.5-2"~" are known exactly.
[Kasami-Tokura (1970)], [Kasami-Tokura-Azumi (1976)]

By symmetry, these are also known for w > 2™ —2.5.2m~",

> W, C {multiples of 2L"7]}  [McEliece (1972)]
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Weight Spectra of RM(10, 3) and RM(10, 4)

Recall that

» For RM(m,r), Ay for w < 2.5-2"~" are known exactly.
[Kasami-Tokura (1970)], [Kasami-Tokura-Azumi (1976)]

By symmetry, these are also known for w > 2™ —2.5.2m~",

> W, C {multiples of 2L"7]}  [McEliece (1972)]

Using our sampling algorithm, we can find witnesses (codewords) that
prove the following result.

Theorem

For (m,r) = (10,3) or (10,4), the weight spectrum in the range

2.5- 2’" T<w < 2™ —25.2m7" js composed exactly of the multiples of
2l"2) in that range.
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Open Questions

» For RM(11,5), can our sampling-based estimates be used in
conjunction with algebraic methods (such as the MacWilliams'
identities) to determine the exact weight enumerators?

» What can we do to improve our estimates at low weights?

» MCMC-based decoders for RM codes?
J.-T. Huang and Y.-H. Kim have recently (GLOBECOM'20, ISIT'23)
considered MCMC decoders for linear codes.



