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What is the talk about?

Let C ⊆ {0, 1}n be a binary Reed-Muller (RM) code.

This talk discusses a sampling-based algorithmic approach for obtaining
reliable numerical estimates of the above count.

Our specific interest is in sets of the form Aw = {x : wH(x) = w},
and the weight enumerators Aw := |C ∩ Aw|.
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Why are weight enumerators useful?

I They bound the probability of ML decoding error over a binary-input
memoryless symmetric (BMS) channel:

Perr ≤
n∑

w=1

Awz
w,

where z =
∑
y

√
P(y |0)P(y |1) is the Bhattacharyya parameter.

I This connection has been exploited in many papers to analyze the
performance of ML/MAP decoding over BMS channels:

[Abbe-Shpilka-Wigderson (T-IT 2015)], [Kudekar et al. (ISIT 2016)],
[Sberlo-Shpilka (arXiv:1811.12447)]
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Brief Background



Definition of an RM code

I Fix m ≥ 1 and consider the points (x1, . . . , xm) of the Boolean
hypercube {0, 1}m.

I Define xS :=
∏

i∈S xi , where S ⊆ [m].

I Pick a multilinear polynomial f =
∑

S∈S xS , where S ⊆ 2[m], with

deg(f ) = max
S∈S
|S | ≤ r .

I Evaluate f at all points in {0, 1}m in the (lexicographic) order:

000 . . . 00→ 000 . . . 01→ 000 . . . 10→ . . .→ 111 . . . 11,

and call the resultant vector Eval(f ). Here, blocklength n = 2m.

I The code RM(m, r) consists of all Eval(f ), where f is as above.
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Dimension, dmin, and other useful things

I Dimension :

dim(RM(m, r)) = #{xS : deg(xS) = |S | ≤ r}

=
r∑

i=0

(
m

i

)
=:

(
m

≤ r

)
.

I Minimum distance :

dmin(RM(m, r)) = wH(Eval(x1x2 . . . xr )) = 2m−r .

I Every minimum-weight codeword v ∈ RM(m, r) can be expressed as

v = (1H(z) : z ∈ {0, 1}m) ,

for an (m − r)-dimensional affine subspace H of Fm
2 .

I The minimum-weight codewords span RM(m, r).
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Prior Work on Weight Enumerators of RM Codes

Exact expressions/values

I RM(m, 1): A0 = A2m = 1, A2m−1 = 2m+1 − 2

I RM(m, 2): Sloane-Berlekamp (1970)

I RM(7, 3): Sugino-Ienaga-Tokura-Kasami (1971)
RM(9, 3): Sugita-Kasami-Fujiwara (1996)
RM(9, 4): Markov-Borissov (2023)

I RM(m, r): Exact Aw known for w < 2.5 · 2m−r

Kasami-Tokura (1970), Kasami-Tokura-Azumi (1976)

Analytical bounds

I Kaufman-Lovett-Porat (2012), Sberlo-Shpilka (2015),
Samorodnitsky (2020), Rao-Sprumont (2022):
Bounds on Aw via Fourier analysis on the hypercube

Algorithms

I Sarwate (1973): Recursive algorithm using Plotkin decomposition
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Weight Spectra of RM Codes

The weight spectrum of a code is the set W = {w : Aw 6= 0}.

We will denote the weight spectrum of RM(m, r) by Wm,r .

I McEliece (1972): Wm,r ⊂ {multiples of 2b
m−1

r c}

I Carlet and Solé (2023):

I Wm,m−3 for m ≥ 6, and Wm,m−4 for m ≥ 8

I W8,3 and W9,4

I Carlet (2023): Wm,m−5 for m ≥ 10
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What are we shooting for?

Let C ⊆ {0, 1}n be a binary Reed-Muller code.

I Exact computation of Aw is hard (algebraically) and computationally
intractable (numerically)

I Can we efficiently (poly. time?) obtain an estimate Âw, such that
with high probability,

Aw ∈ [(1− ε)Aw, (1 + ε)Aw],

for some arbitrarily small ε > 0 ?

7 / 18



What are we shooting for?

Let C ⊆ {0, 1}n be a binary Reed-Muller code.

I Exact computation of Aw is hard (algebraically) and computationally
intractable (numerically)

I Can we efficiently (poly. time?) obtain an estimate Âw, such that
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Sampling-Based Algorithms



A näıve first pass

I Suppose that we try to construct Aw via “rejection sampling”:

1. Draw L uniformly random codewords from RM(m, r).

2. Set Âw = |RM(m, r)| ×
(

#{samples of weight w}
L

)
.

Clearly, for L large, Âw ∈ [(1− ε)Aw, (1 + ε)Aw] w.h.p.

I For most weights, Aw is exp. smaller than RM(m, r)!
see e.g., [Rao and Sprumont (2022)]
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A näıve first pass

I Suppose that we try to construct Aw via “rejection sampling”:

1. Draw L uniformly random codewords from RM(m, r).

2. Set Âw = |RM(m, r)| ×
(

#{samples of weight w}
L

)
.

Clearly, for L large, Âw ∈ [(1− ε)Aw, (1 + ε)Aw] w.h.p.

I For most weights, Aw is exp. smaller than RM(m, r)!
see e.g., [Rao and Sprumont (2022)]

Hence, exponentially many (in blocklength n) draws needed (bad)!
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Key insight

I Note that Aw = Z , the partition function of the distrib. p given by

p(x) =
1

Z
· 1C∩Aw(x), x ∈ {0, 1}n.
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We use Zβ? , for large β?, as a “good” approximation to Z = Aw.
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Key insight

I Note that Aw = Z , the partition function of the distrib. p given by

p(x) =
1

Z
· 1C∩Aw(x), x ∈ {0, 1}n.

I Consider the following Gibbs distribution pβ , for β > 0:

pβ(x) =
1

Zβ
· e−β·E(x), x ∈ C,

where E (x) = |wH(x)− w| and Zβ =
∑

c∈C e
−β·E(x).

I Importantly,

lim
β→∞

pβ(x) = p(x), and

lim
β→∞

Zβ = Z .

We next illustrate how to approximately compute Zβ? .
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Counting via sampling - I
The following technique from statistical physics is well-known
[Valleau and Card (1972)]:

I Fix a large ` > 0 and a “cooling schedule” of β parameters:

0 =: β0 < β1 < . . . < β` =: β?,

where βi = βi−1 + 1/n, for 1 ≤ i ≤ `.

I Write

Zβ? = Zβ0 ×
∏̀
i=1

Zβi

Zβi−1

,

where Zβ0 = Z0 = |C|.

I Observe that

Zβi

Zβi−1

=
1

Zβi−1

∑
c∈C

exp(−βiE (c))

= Epβi−1
[exp((βi−1 − βi )︸ ︷︷ ︸

=−1/n

E (c))].
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Counting via sampling - II

Zβ? = Zβ0 ×
∏̀
i=1

Epβi−1

[
exp(− 1

n |wH(c)− w|︸ ︷︷ ︸
= E(c)

)

]
.

Suppose that we have black-box access to samples from pβ . Then,

1. Estimate Epβi−1

[
exp(− 1

nE (c))
]

as

Yi =
1

t

t∑
j=1

Xi,j ,

where Xi,j
iid∼ pβi−1 and t is “large”.

2. Return Ẑβ? = Z0 ×
∏`

i=1 Yi .

How to sample from pβ?

How large is `?

How large is t?
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How to sample from pβ?

1: procedure MCMC-Sampler
2: Start at an arbitrary codeword c0 ∈ C.
3: Fix a large epoch length τ .
4: for i = 1 : τ do
5: Sample a uniformly random min.-wt.

codeword c#, and set cproposed ← c i−1 + c#

6: c i ←

{
cproposed w.p. paccept

c i−1 w.p. 1− paccept

7: Output cτ .

paccept := min
(
1, exp(−β(E(cproposed)− E(c(i−1))))

)

Observations:

1. We can efficiently draw unif. random. min.-wt. c# using the
corresp. with (m − r)-dimensional affine subspaces.

2. The Metropolis Markov chain above is irreducible (min.-wt.
codewords span C) and has pβ as stationary distribution.
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How large is `? How large is t?

We now provide bounds on the sample complexity of the approx.
counting algorithm.

I Setting t = Θ(n3), we have [Dyer and Frieze (1991)]

Pr[(1− ε)Zβ? ≤ Ẑβ? ≤ (1 + ε)Zβ? ] ≥ 3

4
.

I Setting ` = O(n), we get [A. Sinclair, lecture notes (2020)]

(1− δn)Z ≤ Zβ? ≤ (1 + δn)Z ,

where δn → 0 exponentially quickly.

I Thus, using Θ(n6) samples overall, we obtain that

Pr[(1− γn)Aw ≤ Ẑβ? ≤ (1 + γn)Aw] ≥ 3

4
.

I The constant 3/4 can be improved to 1− α, for α > 0 arbit. small,
using a “median-of-batches” trick.
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Numerical Results - I

Plots of estimated and exact1 rates of weight enumerators of RM(7, 3)

I The rate of a weight enumerator is 1
n
log2 Aw.

1from [Sugino-Ienaga-Tokura-Kasami (1971)]
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Numerical Results - II

Plots of estimated and exact2 rates of weight enumerators of RM(9, 4)
in the range 80 ≤ w ≤ 256

2from [Markov-Borissov (2023)]
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Numerical Results - III

Plot of estimated rates of weight enumerators of RM(11, 5)
in the range 512 ≤ w ≤ 1024
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Weight Spectra of RM(10, 3) and RM(10, 4)

Recall that

I For RM(m, r), Aw for w < 2.5 · 2m−r are known exactly.
[Kasami-Tokura (1970)], [Kasami-Tokura-Azumi (1976)]

By symmetry, these are also known for w > 2m − 2.5 · 2m−r .

I Wm,r ⊂ {multiples of 2b
m−1

r c} [McEliece (1972)]

Using our sampling algorithm, we can find witnesses (codewords) that
prove the following result.

Theorem
For (m, r) = (10, 3) or (10, 4), the weight spectrum in the range
2.5 · 2m−r ≤ w ≤ 2m − 2.5 · 2m−r is composed exactly of the multiples of

2b
m−1

r c in that range.
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Open Questions

I For RM(11, 5), can our sampling-based estimates be used in
conjunction with algebraic methods (such as the MacWilliams’
identities) to determine the exact weight enumerators?

I What can we do to improve our estimates at low weights?

I MCMC-based decoders for RM codes?
J.-T. Huang and Y.-H. Kim have recently (GLOBECOM’20, ISIT’23)

considered MCMC decoders for linear codes.
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