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The big picture

We are broadly interested in the design of coding schemes that allow for
reliable communication over noisy channels with memory.

xn

Decoder
yn m̂m ∈

[
2nR
]

Encoder Channel

I The “memory” of the channel is encapsulated in a channel state si ,
at every time instant i , with the transitions between states
(possibly) driven by the inputs.

I Examples: ISI channels, Gilbert-Elliott channels, input-constrained
channels

I Our focus: Input-constrained channels

Broad question: Can we design reliable coding schemes, with large rate
R ∈ (0, 1), over such channels?
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Channel models and constraints: an overview

We consider the setting of the transmission of binary constrained codes
over noisy channels.

I We consider both stochastic and combinatorial (worst-case) noise
models.

PY |X

m̂ynxn
Decoder

Constrained
Encoder

BMSm ∈
[
2nR
]

xn Zero-Error

Decoder

y n m̂m ∈
[
2nR
] . . .0 1 k

0

0

0

0

11

(Arbitrary) Constrained Encoder

Adversarial Bit-Flip

Error Channel

2

1

e
n ≤ p ∈ (0, 1)

I The constrained sequences that we consider find application in a
number of domains:
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Some constraints of interest

I Runlength-limited (RLL) constraints: Help alleviate ISI in
magneto-optical recording

. . . 0 1 0 0 0 1 0 0 0 0 0 1 0 0 . . . ←→

I Subblock composition constraints: Maintain receiver battery levels
in energy-harvesting communication

I Charge constraints: Ensure spectral nulls (DC-freeness) in frequency
spectrum
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Talk outline

Part 1 Coding schemes over input-constrained symmetric channels via
linear codes

A Explicit coding schemes over rulength-limited channels can be
designed using Reed-Muller (RM) codes!

B A simple Fourier-analytic identity can help compute rates of
arbitrarily constrained subcodes!

Part 2 Bounds on the resilience of constrained codes to worst-case
(combinatorial) symmetric errors

I Delsarte’s linear program (LP) can be extended to yield good bounds!
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Part 1: Coding schemes over input-constrained
symmetric channels



The channel model

PY |X

m̂ynxn
Decoder

Constrained
Encoder

BMSm ∈
[
2nR
]

We first focus on (stochastic) input-constrained Binary-Input Memoryless
Symmetric (BMS) channels:

Examples:

ε
ε

1− ε

1− ε

0

1

1

0

−1

Binary Erasure Channel (BEC)

p

p

1− p

1− p

0

1

1

−1

Binary Symmetric Channel (BSC)
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Main idea and objectives

I Key Idea: Use explicit codes that achieve capacity over
unconstrained BMS channels and select subcodes that comply with
the input constraint.

I We know from [Reeves and Pfister (2022), Arikan (2009),
Richardson and Urbanke (2001)] that there exist linear codes that
achieve capacity over any BMS channel, under suitable decoding
procedures.

I Hence, constrained subcodes of such linear codes also enjoy
vanishing error probabilities, under bit-MAP decoding.

I Goals:

I Design explicit constrained coding schemes, using capacity-achieving
linear codes, for select constraints.

I Obtain estimates of the sizes of the largest constrained subcodes of
general linear codes.
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Part 1A: Constrained coding schemes using RM
codes



The input constraint

The input constraint of interest to us is the (d ,∞)-runlength limited
(RLL) input-constraint:

Definition
A binary sequence is said to satisfy the (d ,∞)-RLL constraint if there
exist at least d 0s between every pair of successive 1s.

I Example: For the (2,∞)-RLL constraint,

1 0 0 0 1 0 0 0 0 1 0 0 1 X

1 0 0 1 0 1 0 0 0 1 0 0 1 X

I (1,∞)-RLL ≡ no-consecutive-ones.

I The (d ,∞)-RLL constraint on data sequences ensures that
successive voltage peaks (or 1 bits) are spaced far apart, in order to
alleviate ISI in magnetic recording systems.
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Select prior art

Coding-theoretic work:

I Patapoutian and Kumar (1992): Coset-averaging lower bound on
rates of constrained subcodes of cosets of linear codes.

Information-theoretic work:

I Zehavi and Wolf (1988), Shamai and Kofman (1990): Achievable
rates over a BSC with runlength constraints at the input, using
(random) Markov inputs

I Arnold et al. (2006), Han (2013, 2015), Li and Han (2018):
Numerically computable achievable rates over general finite-state
channels (FSCs), using Markov inputs

I Thangaraj (2017), Huleihel, Sabag, Permuter, Kashyap (2019):
Upper bounds on the capacities of FSCs using the “dual capacity”
method

In this part: Constrained code constructions using RM codes and explicit
bounds on rates
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Brief Background on RM Codes
I Codewords of RM codes consist of evaluation vectors of multivariate

polynomials over F2.
I For a polynomial f ∈ F2[x1, x2, . . . , xm] and a binary vector

z = (z1, . . . , zm), let Evalz(f ) := f (z1, . . . , zm).
I Let the evaluation points z be ordered according to the standard

lexicographic ordering:

000 . . . 00→ 000 . . . 01→ 000 . . . 10→ . . .→ 111 . . . 11

I We denote by Eval(f ) := (Evalz(f ))z∈Fm
2

, the 2m-length vector of

evaluations of f at points ordered in the lexicographic order

Definition
The r th order binary RM code RM(m, r) is defined as the set of binary
vectors:

RM(m, r) := {Eval(f ) : f ∈ F2[x1, x2, . . . , xm], deg(f ) ≤ r},

where deg(f ) is the degree of the largest monomial in f and the degree
of a monomial xS :=

∏
j∈S :S⊆[m]

xj is simply |S |.
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Brief Background on RM Codes
I Dimension and rate:

dim(RM(m, r)) = #{xS ∈ F2[x1, . . . , xm] : deg(xS) = |S | ≤ r}

=
r∑

i=0

(
m

i

)
=:

(
m

≤ r

)
.

Hence, rate(RM(m, r)) =
( m
≤r)
2m .

I Example: For R ∈ (0, 1), consider the sequence of codes
{Cm(R) = RM(m, rm)}m≥1, with

rm := max

{⌊
m

2
+

√
m

2
Q−1(1− R)

⌋
, 0

}
,

where

Q(t) =
1√
2π

∫ ∞
t

e−τ
2/2dτ, t ∈ R.

I It can be checked that rate(Cm)
m→∞−−−−→ R.
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Selected results

A simple construction using linear subcodes:

Theorem
For any R ∈ [0,C ), there exists a sequence of (d ,∞)-RLL linear

subcodes {C(d,∞)
m (R)}, where, for t = dlog2(d + 1)e,

C(d,∞)
m (R) =

{
Eval(f ) : f =

(
m∏

i=m−t+1

xi

)
·h(x1, . . . , xm−t),

deg(h) ≤ rm − t

}
.

Moreover, rate
(
C(d,∞)
m (R)

)
m→∞−−−−→ R · 2−dlog2(d+1)e.

For example, when d = 1, these subcodes have all the symbols in odd
coordinate positions as 0.
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Selected results

Converse results for linear subcodes:

Theorem
For any sequence

{
Ĉm(R)

}
m≥1

of RM codes, following the lexicographic

coordinate ordering, such that rate
(
Ĉm(R)

)
m→∞−−−−→ R ∈ (0, 1), the

largest rate of linear (d ,∞)-RLL constrained subcodes is R
d+1 .

We had previously identified (d ,∞)-RLL linear subcodes{
C(d,∞)
m (R)

}
m≥1

of rate R · 2−dlog2(d+1)e ≈ R
d+1 .

Hence, the subcodes
{
C(d,∞)
m (R)

}
m≥1

are essentially rate-optimal.
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Selected results
Converse results for linear subcodes (contd.):

Theorem
Under almost all coordinate orderings, the largest rate of linear
(d ,∞)-RLL subcodes of RM codes of rate R, is at most R

d+1 + ε, for
ε > 0 arbitrarily small.

Existence results for non-linear subcodes:

Theorem
For any sequence of RM codes

{
Ĉm(R)

}
m≥1

, under the lexicographic

coordinate ordering, such that rate
(
Ĉm(R)

)
m→∞−−−−→ R ∈ (0, 1), there

exist (1,∞)-RLL subcodes C̃(1,∞)
m (R) ⊆ Ĉm(R), of rate at least

max
(
0,R − 3

8

)
.

These subcodes are necessarily non-linear for R > 0.75, since then
R − 3

8 >
R
2 .
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Ĉm(R)

}
m≥1

, under the lexicographic

coordinate ordering, such that rate
(
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Plots and Comparisons - I

Figure: Plot comparing the achievable rates using (1,∞)-RLL RM subcodes
with the coset-averaging lower bound that is approximately R − 0.3058, of
[Patapoutian and Kumar (1992)]
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A concatenated coding scheme

We adopt the “reverse concatenation” strategy of [Bliss (1981)] and
[Mansuripur (1991)] that is commonly used to limit error propagation
during decoding of constrained codes.
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A concatenated coding scheme

Encoding (the Bliss scheme):
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A concatenated coding scheme

Encoding:
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A concatenated coding scheme

Encoding+Decoding:
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Coding theorem

Let C be the capacity of the unconstrained BMS channel.

Slight modifications to the previous concatenated coding scheme yield
the following coding theorem:

Theorem
For any R ∈ (0,C ), there exists a sequence of (d ,∞)-RLL constrained
concatenated codes {Cconcm }m≥1 that achieves a rate lower bound given by

lim inf
m→∞

rate (Cconcm ) ≥ C
(d)
0 · R2 · 2−dlog2(d+1)e

R2 · 2−dlog2(d+1)e + 1− R + ε
,

over (d ,∞)-RLL input-constrained BMS channels, where ε > 0 can be
arbitrarily small.
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Plots and Comparisons - II

Figure: Plot comparing the achievable rates using (2,∞)-RLL linear RM
subcodes with the coset-averaging lower bound and the rate achieved by the
concatenated coding scheme
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Some questions

I Can we obtain better estimates of the weight distributions of RM
codes, which will help sharpen our bounds?

I Can we extend the techniques in our work to design good codes over
other finite-state channels such as Gilbert-Elliott channels (GECs) or
ISI channels?
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Part 1B: Counting constrained codewords in linear
codes



The problem

I Motivated by the previous section, we now consider the problem of
computing rates of (arbitrary) constrained codewords in general
linear codes C.

I Such an approach can help identify linear codes with large
constrained subcodes.

I The problem: Given a set of constrained codewords A ⊆ Fn
2, we

would like to gain insight into

N(C;A) =
∑
x∈C

1{x ∈ A} =
∑

x∈{0,1}n
1{x ∈ A} · 1{x ∈ C}.

This looks like an inner product between Boolean functions. . .

21 / 33



The problem

I Motivated by the previous section, we now consider the problem of
computing rates of (arbitrary) constrained codewords in general
linear codes C.

I Such an approach can help identify linear codes with large
constrained subcodes.

I The problem: Given a set of constrained codewords A ⊆ Fn
2, we

would like to gain insight into

N(C;A) =
∑
x∈C

1{x ∈ A} =
∑

x∈{0,1}n
1{x ∈ A} · 1{x ∈ C}.

This looks like an inner product between Boolean functions. . .

21 / 33



The problem

I Motivated by the previous section, we now consider the problem of
computing rates of (arbitrary) constrained codewords in general
linear codes C.

I Such an approach can help identify linear codes with large
constrained subcodes.

I The problem: Given a set of constrained codewords A ⊆ Fn
2, we

would like to gain insight into

N(C;A) =
∑
x∈C

1{x ∈ A} =
∑

x∈{0,1}n
1{x ∈ A} · 1{x ∈ C}.

This looks like an inner product between Boolean functions. . .

21 / 33



The problem

I Motivated by the previous section, we now consider the problem of
computing rates of (arbitrary) constrained codewords in general
linear codes C.

I Such an approach can help identify linear codes with large
constrained subcodes.

I The problem: Given a set of constrained codewords A ⊆ Fn
2, we

would like to gain insight into

N(C;A) =
∑
x∈C

1{x ∈ A} =
∑

x∈{0,1}n
1{x ∈ A} · 1{x ∈ C}.

This looks like an inner product between Boolean functions. . .
21 / 33



A brief refresher on Fourier analysis on Fn
2

I Given any function f : {0, 1}n → R and a vector
s = (s1, . . . , sn) ∈ {0, 1}n, the Fourier coefficient of f at s is

f̂ (s) :=
1

2n

∑
x∈{0,1}n

f (x) · (−1)x·s .

I The functions (χs : s ∈ {0, 1}n), where χs(x) := (−1)x·s , form a
basis for the vector space V of functions f : {0, 1}n → R. Further,
they are orthonormal with respect to the inner product 〈·, ·〉, where:

〈f , g〉 :=
1

2n

∑
x∈{0,1}n

f (x)g(x).

Theorem (Plancherel’s Theorem)
For any f , g ∈ {0, 1}n → R, we have that

〈f , g〉 =
∑

s∈{0,1}n
f̂ (s)ĝ(s).
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Workhorse
Observe that

N(C;A) =
∑

x∈{0,1}n
1{x ∈ A} · 1{x ∈ C}

= 2n ·
∑

s∈{0,1}n
1̂A(s) · 1̂C(s).

For linear codes C, it is easy to show that

1̂C(s) =
|C|
2n
· 1C⊥(s).

Hence, we have that

N(C;A) = |C| ·
∑
s∈C⊥

1̂A(s).

Observations:

1. If dim(C)� n/2, then we can employ our insight to count over a
low-dimensional space!

2. For many constraints of interest, the Fourier transform above is
computable!
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2. For many constraints of interest, the Fourier transform above is
computable!
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Example 0: warm-up

I Consider the constant weight constraint that admits only binary
sequences of a fixed weight i ∈ [0 : n] (we let Wi denote the set of
such words). Let us write ai (C) := N(C;Wi ).

I Applying our method, we get that

ai (C) =
1

|C⊥|

n∑
j=0

K
(n)
i (j) · aj(C⊥),

where K
(n)
i (x) is the i th-Krawtchouk polynomial at length n, with

K
(n)
i (z) =

∑i
`=0(−1)`

(
z
`

)(
n−z
i−`
)
.

These are simply MacWilliams’ identities for linear codes.
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Example 1: 2-charge constraint

I We now consider a spectral null constraint, whose sequences in
{+1,−1}n have a null at zero frequency (sometimes called a DC-free
constraint). Our constraint is the so-called 2-charge constraint.

0 1 2

+1 +1

−1−1

I We let S2 denote those sequences in {0, 1}n that can be mapped to
2-charge constrained sequences via the map x 7→ (−1)x , for
x ∈ {0, 1}.

0 1 2

0 0

11

Sequences in S2 can be read off the labels of paths in the above graph.
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Computation of Fourier coefficients

I We define the set of vectors (when n is odd)

b0 := 100 . . . 00, b1 := 0 11︸︷︷︸ 00 . . . 00,

b2 := 000 11︸︷︷︸ . . . 00, . . . bd n
2e := 000 . . . 00 11︸︷︷︸,

and similarly when n is even.

I We let VB denote the span({b0,b1, . . . ,bd n
2e}). Then,

Theorem

For a =
(
a0, a1, . . . , ad n

2e−1
)
∈ {0, 1}d

n
2e, consider s =

d n
2e−1∑
i=0

ai · bi . It

holds that
1̂S2 (s) = 2b

n
2c−n · (−1)w(a)−a0 .

Further, for s /∈ VB, we have that 1̂S2 (s) = 0.
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Some consequences

Consider now the following condition (C):

(C) For all s ∈ C⊥ ∩ VB, it holds that 1̂S2(s) ≥ 0.

Then, applying our approach and using the previous theorem, we get that

I If condition (C) is not satisfied, then, N(C;S2) = 0.

I If condition (C) is satisfied and there exist tn ∈
[
1 :
⌈
n
2

⌉
− 1
]

linearly

independent vectors (s1, . . . , stn) in C⊥ with 1̂S2(s i ) > 0, for all

1 ≤ i ≤ tn, then, N(C;S2) = |C| · 2tn+b n
2c−n.

Hence, it is possible to construct a sequence {C(n)}n≥1 of linear codes of
rate R such that the rate of their constrained subcodes is

lim inf
n→∞

rate
(
C(n)2

)
= R − 1

2
+ lim inf

n→∞

tn
n
.

Therefore, we can obtain rates better than the coset-averaging bound of
[Patapoutian and Kumar (1992)], using subcodes!
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Applications to specific linear codes

We also applied our approach to count the number of words in S2, in
specific linear codes.

Hamming codes:

Theorem
For m ≥ 3 and for C being the [2m − 1, 2m − 1−m] Hamming code
under a canonical coordinate ordering, we have that

N(C;S2) = 2

⌊
2m−1

2

⌋
−1
.

Reed-Muller codes:

(m, r) (5, 3) (6, 4) (7, 5) (8, 6)
N(RM(m, r);S2) 2048 6.711× 107 1.441× 1017 1.329× 1036

Some sample numerical values for high rate RM codes
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Example 2: (d ,∞)-RLL constraint

I We return to our familiar runlength-limited constraint, which
requires that there be at least d 0s between successive 1s. Let Sd

denote the set of constrained sequences.

I Let 1̂Sd

(n)
denote the Fourier transform at blocklength n ≥ 1.

Theorem
For n ≥ d + 2 and for s = (s1, . . . , sn) ∈ {0, 1}n, it holds that

1̂Sd

(n)
(s) = 2−1 · 1̂Sd

(n−1)
(sn2 ) + (−1)s1 · 2−(d+1) · 1̂Sd

(n−d−1) (
snd+2

)
.

I The above theorem gives rise to a recursive algorithm for computing

1̂Sd

(n)
.

This recursive procedure is faster than the Fast Walsh-Hadamard
Transform!
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Example 3: Subblock-composition constraints

I Next, consider the so-called subblock composition constraint, which
admits binary sequences that have a fixed number of 1s in each
“subblock”.

I Application: In energy-harvesting communication, ensures that the
receiver’s battery does not drain out during periods of low symbol
energy1.

. . .x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 xn−2 xn−1 xn

Size p subblocks

z 1s z 1s z 1s z 1s z 1s

I Let C p
z denote the set of such constrained sequences.

1A. Tandon, M. Motani, and L. R. Varshney, “Subblock-constrained codes for
real-time simultaneous energy and information transfer,” T-IT, 2016.
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Computation of Fourier coefficients

I Standard arguments lead us to the characterization of Fourier
coefficients:

Theorem
For s ∈ {0, 1}n with s = s1s2 . . . sp, we have that

2n · 1̂C p
z
(s) =

p∏
`=1

K (n/p)
z (w(s`)),

where K
(n/p)
i (j) =

∑i
t=0(−1)t

(
j
t

)(
n/p−j
i−t

)
is the i th-Krawtchouk

polynomial, for the length n/p.

I We show2 that this characterization can help speed up the
computation of constrained subcodes of RM codes, for select values
of p.

2V. A. R. and N. Kashyap, “Estimating the sizes of binary error-correcting
constrained codes,” submitted to the IEEE JSAIT.
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Some questions

I Can we come up with recursive algorithms for efficient computation
of the Fourier coefficients for a large class of constraints (say,
finite-type constraints, representable by a finite, labelled, directed
graph)?

I Can we obtain estimates of the asymptotic rates of constrained
subcodes of specific linear codes, using our methods?

I Can we find more use cases of a Fourier-analytic approach to
counting constrained codewords?

I For example, our Fourier coefficients can also be used to compute
the weight distributions of constrained words in Fn

2 and in a given
linear code C.
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Part 2: A version of Delsarte’s LP for constrained
systems



The setting

I Consider the channel model where the constrained codewords we
intend transmitting, are subjected to adversarial (or worst-case)
bit-flip errors (or erasures).

xn Zero-Error

Decoder

y n m̂m ∈
[
2nR
] . . .0 1 k

0

0

0

0

11

(Arbitrary) Constrained Encoder

Adversarial Bit-Flip

Error Channel

2

1

e
n ≤ p ∈ (0, 1)

I We wish to uniquely recover the transmitted codeword, with zero
error.

I Equivalently, we wish to come up with bounds on the sizes of
constrained codes with a given minimum Hamming distance.
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The problem

I Given a length-n constrained system represented by a set A of
constrained words, what is the largest size of a constrained code
with minimum distance at least d?

I This is a packing problem for which there exist generalized sphere
packing bounds [Fazeli, Vardy, Yaakobi (2015), Cullina, Kiyavash
(2016)]

Can we improve on these bounds?
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Delsarte’s LP (for unconstrained systems)
Let A(n, d) denote the size of the largest (not necessarily linear) length-n
code with minimum distance at least d .

Consider the following LP L:

maximize
n∑

w=0

aw

subj. to aw ≥ 0, for all w ∈ [0 : n],
n∑

j=0

aj · Kw (j) ≥ 0, for all w ∈ [0 : n],

aw = 0, for w ∈ [1 : d − 1],

a0 = 1.

I Delsarte (1973) proved that the distance distribution
(bw : 0 ≤ w ≤ n) of any binary length-n code C of minimum
distance at least d is a feasible solution to the LP above, with
objective value |C|.

I Hence, A(n, d) ≤ val(L).
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Taking a step back: an alternative formulation

Del(n, d)

maximize
f : {0,1}n→R

∑
x∈{0,1}n

f (x)

subject to:

f (x) ≥ 0, ∀ x ∈ {0, 1}n,

f̂ (s) ≥ 0, ∀ s ∈ {0, 1}n,
f (x) = 0, if 1 ≤ w(x) ≤ d − 1,

f (0n) = 1.

I A feasible solution to the above LP is 2n

|C| · (1C ? 1C), for C of

minimum distance at least d . Here, for f , g : {0, 1}n → R,

(f ? g)(x) :=
1

2n

∑
z∈{0,1}n

f (z) · g(x + z).

I The objective value again is |C|.
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Our LP for constrained systems
Let A(n, d ;A) denote the largest length-n A-constrained code of
minimum distance at least d .

Del(n, d ;A)

maximize
f : {0,1}n→R

∑
x∈{0,1}n

f (x)

subject to:

f (x) ≥ 0, ∀ x ∈ {0, 1}n,

f̂ (s) ≥ 0, ∀ s ∈ {0, 1}n,
f (x) = 0, if 1 ≤ w(x) ≤ d − 1,

f (0n) ≤ val(Del(n, d)),

f (x) ≤ 2n · (1A ? 1A)(x), ∀ x ∈ {0, 1}n.

I A feasible solution to Del(n, d ;A) can again be constructed, whose
objective value is (A(n, d ;A))2.
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How good is the LP?
I We ran our LP on the (1,∞)-RLL constrained system (n = 10) . . .

d Del(n, d ;S(1,∞)) GenSph(n, d ;S(1,∞)) Del(n, d)

2 128.557 144 512
3 74.762 111 85.333
4 42.048 111 42.667
5 12 63 12
6 6 63 6
7 3.2 26 3.2

I . . . and on the (2,∞)-RLL constrained system (n = 10):

d Del(n, d ;S(2,∞)) GenSph(n, d ;S(2,∞)) Del(n, d)

2 49.578 60 512
3 32.075 46.5 85.333
4 21.721 46.5 42.667
5 7.856 34 12
6 4.899 34 6
7 2.529 19 3.2

I Our LP appears to perform better than the generalized sphere
packing upper bounds.
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Some comments

I The LP Del(n, d ;A) as stated has 2n variables for a blocklength n.
For select constraints, it is indeed possible to “symmetrize” the LP
using the symmetry group of the constraint (i.e., the group of index
permutations that leave 1A unchanged).

This symmetrization can greatly reduce the size of the LP
(sometimes resulting in only polynomially many variables +
constraints!)

I The LP also satisfies the sanity check:

val(Del(n, d ;A))1/2 ≤ min{val(Del(n, d)), |A|}.

I Future work can apply modern Fourier analytic techniques à la
[Navon, Samorodnitsky (2005)], [Loyfer, Linial (2022)] or expander
graph-related tools [Friedman, Tillich (2005)] to obtain asymptotic
rate-distance tradeoff upper bounds using our LP.
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Some questions

I Can we derive asymptotic upper bounds on the rate-distance
tradeoff for constrained codes, using our LP formulation?

I Can we connect our Fourier-analytic techniques of counting, with
this packing problem?

40 / 33



Thank You!


