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The big picture

▶ Suppose that we wish to transmit a message m over a noisy medium
(or channel):

xn
Decoder

y n m̂m ∈
[
2nR

]
Encoder Channel

▶ Suppose also that we require the input xn to the channel to be
“constrained” to lie in An ⊆ {0, 1}n:

xn ∈ An
Decoder

y n m̂m ∈
[
2nR

]
Constrained
Encoder

Channel
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The big picture

▶ Suppose also that we require the input xn to the channel to be
“constrained” to lie in An ⊆ {0, 1}n:

xn ∈ An
Decoder

y n m̂m ∈
[
2nR

]
Constrained
Encoder

Channel

▶ Broad questions for this thesis:

Q1) What do good coding schemes over such channels look like?

Q2) What is the largest rate of reliable codes over such channels, or what
is the channel capacity?
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Sample input constraints

▶ Runlength-limited (RLL) constraints: Help alleviate ISI in
magneto-optical recording

. . . 0 1 0 0 0 1 0 0 0 0 0 1 0 0 . . . ←→

▶ Subblock composition constraints: Maintain receiver battery levels
in energy-harvesting communication

▶ Charge constraints: Ensure spectral nulls (DC-freeness) in frequency
spectrum
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Channel models

Our focus will be on two classes of channels:

1. Input-constrained discrete memoryless channels (DMCs)

xn
Decoder

y n m̂m ∈
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0
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PY |X
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2. Input-constrained adversarial noise channels

xn Zero-Error

Decoder

y n m̂m ∈
[
2nR
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0
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11

(Arbitrary) Constrained Encoder

Adversarial
Bit-Flip

Error Channel2

1

e
n ≤ p ∈ (0, 1)
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We deliberate not about ends, but about means. For a doctor does not
deliberate whether he shall heal, nor an orator whether he shall persuade [. . . ]
they consider how it will be achieved and by what means this will be achieved,
until they come to the first cause [. . . ] and what is last in the order of analysis
seems to be the first in the order of becoming.

Aristotle, Nicomachean Ethics, Book III, 3, 1112b
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they consider how it will be achieved and by what means this will be achieved,
until they come to the first cause [. . . ] and what is last in the order of analysis
seems to be the first in the order of becoming.

Aristotle, Nicomachean Ethics, Book III, 3, 1112b

Q2) What is the largest rate at which reliable information transfer can
happen over such channels, or what is the channel capacity?

Q1) What do good coding schemes over such channels look like?



Summary of contributions

▶ Bounds on the capacities of input-constrained memoryless channels:

1. Simple, single-letter lower bounds for input-driven finite-state
channels

2. A stochastic approximation algorithm for the binary erasure channel
(BEC) with a no-consecutive-ones input constraint

3. Upper bounds on the capacity of the (d ,∞)-RLL input-constrained
BEC via an explicit characterization of feedback capacity

▶ Coding schemes for input-constrained memoryless symmetric
channels:

1. Coding schemes using (d ,∞)-RLL constrained subcodes of
Reed-Muller (RM) codes

2. A Fourier-analytic perspective on the sizes of constrained subcodes
of general linear codes

▶ Codes for input-constrained adversarial error channels:

1. Upper bounds on sizes of codes via a version of Delsarte’s linear
program
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Estimating the capacities of input-constrained
memoryless channels
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Revisiting the channel model

▶ For an unconstrained DMC,

xn
Decoder

y n m̂m ∈
[
2nR

]
Encoder DMC

PY |X

Theorem (Shannon (1948))
The capacity of an unconstrained DMC is

C = max
{P(x)}

IP(X ;Y ). [Single-letter expression!]
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▶ For the rest of this talk, we assume that the initial “state” of the
constrained encoder is fixed and made known to both the encoder
and decoder.

▶ Such channels are a special class of input-driven finite-state channels
(FSCs), with a known initial state.
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Theorem (Blackwell, Breiman, Thomasian (1958) and Gallager (1968))

The capacity of an input-driven FSC with a fixed, known, initial state s0
is given by

C = lim
n→∞

max
{P(xn|s0)}

1

n
IP(X

n;Y n | s0). [Multi-letter expression!]
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The capacity of an input-driven FSC with a fixed, known, initial state s0
is given by

C = lim
n→∞

max
{P(xn|s0)}

1

n
IP(X

n;Y n | s0). [Multi-letter expression!]

▶ Explicitly solving for C for general channels is a wide-open problem.

▶ Evaluating info. rate using simple (Markovian) inputs ≡ Computing
entropy rate of a Hidden Markov Process [Hard!]
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▶ We now (re-)introduce our input constraints, represented by
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Theorem (Blackwell, Breiman, Thomasian (1958) and Gallager (1968))

The capacity of an input-driven FSC with a fixed, known, initial state s0
is given by

C = lim
n→∞

max
{P(xn|s0)}

1

n
IP(X

n;Y n | s0). [Multi-letter expression!]

Refining Q2): Can we derive good bounds on the capacities of
input-constrained DMCs?
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A simple lower bound
▶ For the broader class of input-driven FSCs (with s0 known), observe

that for a fixed P,

IP(X
n;Y n | s0) ≥

N∑
t=1

I (Xt ;Yt | X t−1, s0).

▶ Hence,

C = lim
n→∞

max
{P(xt |x t−1,s0)}n

t=1

1

n
I (X n;Y n | s0)

≥ lim
n→∞

max
{P(xt |x t−1,s0)}n

t=1

1

n

n∑
t=1

I (Xt ;Yt | X t−1, s0)

= sup
{P(xt |x t−1)}t≥1

lim inf
n→∞

1

n

n∑
t=1

I (Xt ;Yt | X t−1, s0) [Permuter et al. (2008)]

≥ sup
{Q(x|s)∈P}

IQ(X ;Y |S),

where P is the class of input distributions inducing Markov chains
on the states of the constraint with an aperiodic, closed,
communicating class containing s0.
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Applying the lower bound

A recurring motif: the (d ,∞)-runlength limited (RLL) constraint

A binary sequence is said to satisfy the (d ,∞)-RLL constraint if
there exist at least d 0s between every pair of successive 1s.
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Applying the lower bound

A recurring motif: the (d ,∞)-runlength limited (RLL) constraint

A binary sequence is said to satisfy the (d ,∞)-RLL constraint if
there exist at least d 0s between every pair of successive 1s.

▶ For the (2,∞)-RLL constraint,

1 0 0 0 1 0 0 0 0 1 0 0 1 ✓

1 0 0 1 0 1 0 0 0 1 0 0 1 X

▶ (1,∞)-RLL ≡ no-consecutive-ones.

▶ In magneto-optical recording systems, the (d ,∞)-RLL constraint
alleviates intersymbol interference (ISI).
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Applying the lower bound

A recurring motif: the (d ,∞)-runlength limited (RLL) constraint

A binary sequence is said to satisfy the (d ,∞)-RLL constraint if
there exist at least d 0s between every pair of successive 1s.

We illustrate lower bounds over (d ,∞)-RLL input-constrained BECs and
BSCs:

ϵ
ϵ

1− ϵ

1− ϵ

0

1

1

0

−1

Binary Erasure Channel (BEC)

p

p

1− p

1− p

0

1

1

−1

Binary Symmetric Channel (BSC)

8 / 37



Plots and Comparisons: BSC
For the (d ,∞)-RLL input-constrained BSC,

Cd(p) ≥ max
a∈[0,1]

hb(ap + āp̄)− hb(p)

ad + 1
. [Zehavi and Wolf (1988)]

Plots for the (1,∞)-RLL input-constrained BSC
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Plots and Comparisons
For the (d ,∞)-RLL input-constrained BEC,

Cd(ϵ) ≥ κd︸︷︷︸
noiseless
capacity

·(1− ϵ). [Li and Han (2018)]

Plots for the (1,∞)-RLL input-constrained BEC [κ1 ≈ 0.694]
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Improving the lower bound for a special case

We shall now work towards deriving better bounds for the (1,∞)-RLL
input-constrained BEC.

▶ The channel is the BEC.

▶ The codewords satisfy the (1,∞)-RLL input constraint.
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Key ideas
▶ We restrict the input process (Xi )i≥1 to (again) be first-order

Markov and ergodic, with X0 ∼ π (stat. dist.). Then,

C = lim
N→∞

max
{P(xN )}

1

N
I (XN ;Y N)

≥ sup
{P(x|x−)}

lim
N→∞

1

N
I (XN ;Y N) =: Cf︸︷︷︸

first-order cap.

.

is the input Markov process

Q =

[
1− a a
1 0

]
is the transition probability matrix.

Given such an input distribution, we identify an associated
Markov process (Li , X̃i ,Yi )i≥1, which succintly encapsulates
the information in Y N .
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A useful theorem

Theorem
The first order capacity Cf is given by (see also [Li and Han (2018)])

Cf (ϵ) = (1− ϵ) · max
a∈(0,1)

lim
N→∞

1

N

N∑
i=1

E
[
H
(
aQ(Li−1)(X̃i , 0)

)]
.

We then devise a two-timescale stochastic approximation algorithm
for approximately computing Cf .
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Plots and Comparisons

The simple linear lower bound equals κ1(1− ϵ), where κ1 ≈ 0.694.

Moving to Q1): With some knowledge about capacity estimates, we shall
proceed to constructing error-correcting constrained codes.

14 / 37



Plots and Comparisons

The simple linear lower bound equals κ1(1− ϵ), where κ1 ≈ 0.694.

Moving to Q1): With some knowledge about capacity estimates, we shall
proceed to constructing error-correcting constrained codes.

14 / 37



Coding Schemes Over Input-Constrained Channels

Part I: Input-Constrained Memoryless Channels

xn
Decoder

y n m̂m ∈
[
2nR

] . . .0 1 k
0

0

0

0

11

(Arbitrary) Constrained Encoder

DMC

PY |X
2

1



Background on BMS channels

In this talk, we restrict our attention to binary-input memoryless
symmetric (BMS) channels:

Y = (−1)X · Z ,

for noise Z independent of X .

Examples:

ϵ
ϵ

1− ϵ

1− ϵ

0

1

1

0

−1

Binary Erasure Channel (BEC)

p

p

1− p

1− p

0

1

1

−1

Binary Symmetric Channel (BSC)
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BMS channels and linear codes

▶ Suppose that we were to use a linear code C over the BMS channel.

▶ Under (optimal) block-MAP decoding, the block-error probabilities
are independent of the codeword transmitted.

▶ Hence, constrained subcodes of C have the same (average) error
probabilities as C itself!

Our approach: Use constrained subcodes of capacity-achieving codes.

[cf. Abbe & Sandon (2023), Arikan (2009), . . . ]

A recurring task: Compute/estimate the rates of constrained subcodes of
linear codes.
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Designing Coding Schemes Over (d ,∞)-RLL
Input-Constrained BMS︸︷︷︸

binary-input
memoryless symmetric

Channels
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Decoder
yn m̂m ∈
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2nR

] . . .

. . .

0 1 d
0 0 0

0

11

Constrained Encoder
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Selected results

Theorem
For any R ∈ (0, 1), there exists an explicit sequence of (d ,∞)-RLL linear

subcodes
{
C(d)
m

}
m≥1

of a sequence of RM codes of rate R such that

rate
(
C(d)
m

)
m→∞−−−−→ R · 2−⌈log2(d+1)⌉.

Theorem
For any R ∈ (0, 1), there exists a sequence of (1,∞)-RLL subcodes{
Ĉ(d)
m

}
m≥1

of a sequence of RM codes of rate R such that

rate
(
Ĉ(d)
m

)
m→∞−−−−→ max

(
0,R − 3

8

)
.
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Plots and Comparisons - I

Plot comparing the achievable rates using (1,∞)-RLL RM subcodes with the
coset-averaging lower bound that is approximately R − 0.3058, of [Patapoutian

and Kumar (1992)]
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Selected results: a concatenated coding scheme

We adopt the “reverse concatenation” strategy of [Bliss (1981)] and
[Mansuripur (1991)] that is commonly used to limit error propagation
during decoding of constrained codes.
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Selected results: a concatenated coding scheme

Encoding (the Bliss scheme):
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Selected results: a concatenated coding scheme

Encoding+Decoding:
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Coding theorem

Let C be the capacity of the unconstrained BMS channel.

Slight modifications to the previous concatenated coding scheme yield
the following coding theorem:

Theorem
For any R ∈ (0,C ), there exists a sequence of (d ,∞)-RLL constrained
concatenated codes {Cconc

m }m≥1 that achieves a rate lower bound given by

lim inf
m→∞

rate (Cconc
m ) ≥ κd · R2 · 2−⌈log2(d+1)⌉

R2 · 2−⌈log2(d+1)⌉ + 1− R + ϵ
,

over (d ,∞)-RLL input-constrained BMS channels, where ϵ > 0 can be
arbitrarily small.
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Plots and Comparisons - II

Figure: Plot comparing the achievable rates using (2,∞)-RLL linear RM
subcodes with the lower bound via the probabilistic method and the rate
achieved by the concatenated coding scheme

Continuing with Q1): How do we identify constrained subcodes of
general linear codes, for arbitrary constraints?
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achieved by the concatenated coding scheme

Continuing with Q1): How do we identify constrained subcodes of
general linear codes, for arbitrary constraints?
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Counting constrained codewords in general linear
codes



The problem

▶ Motivated by the previous section, we now consider the problem of
computing rates of (arbitrarily-)constrained codewords in linear
codes C.

▶ The problem: Given a set of constrained codewords A ⊆ Fn
2, we

would like to gain insight into

N(C;A) =
∑
x∈C

1{x ∈ A} =
∑

x∈{0,1}n

1{x ∈ A} · 1{x ∈ C}.

This looks like an inner product between Boolean functions!
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A brief refresher on Fourier analysis on Fn
2

▶ Given any function f : {0, 1}n → R and a vector
s = (s1, . . . , sn) ∈ {0, 1}n, the Fourier coefficient of f at s is

f̂ (s) :=
1

2n

∑
x∈{0,1}n

f (x) · (−1)x·s .

▶ An inner product ⟨f , g⟩ between f , g : {0, 1}n → R can be defined as

⟨f , g⟩ := 1

2n

∑
x∈{0,1}n

f (x)g(x).

Theorem (Plancherel’s Theorem)
For any f , g ∈ {0, 1}n → R, we have that

⟨f , g⟩ =
∑

s∈{0,1}n

f̂ (s)ĝ(s).
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Workhorse

▶ Observe that

N(C;A) = 2n ·
∑

s∈{0,1}n

1̂A(s) · 1̂C(s).

▶ For linear codes C, it is easy to show that

1̂C(s) =
|C|
2n

· 1C⊥(s).

▶ Hence,
N(C;A) = |C| ·

∑
s∈C⊥

1̂A(s).

1. If dim(C) ≫ n/2, then we can employ our insight to count in
a low-dimensional space!

2. For many constraints of interest, the Fourier transform above
is analytically/numerically computable!
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Example 1: 2-charge constraint

▶ We consider a spectral null constraint, whose sequences in
{+1,−1}n have a null at zero frequency.

▶ We let S2 denote those sequences in {0, 1}n that can be mapped to
2-charge constrained sequences via the map x 7→ (−1)x , for
x ∈ {0, 1}.

0 1 2

0 0

11

Sequences in S2 can be read off the labels of paths here.
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Computation of Fourier coefficients and consequences

Theorem
There exists a vector space V such that for s ∈ V ,

1̂S2 (s) = 2⌊
n
2⌋−n · (−1)γ(s),

where γ : {0, 1}n → {0, 1}. Further, for s /∈ V , we have 1̂S2 (s) = 0.
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Computation of Fourier coefficients and consequences

Theorem
There exists a vector space V such that for s ∈ V ,

1̂S2 (s) = 2⌊
n
2⌋−n · (−1)γ(s),

where γ : {0, 1}n → {0, 1}. Further, for s /∈ V , we have 1̂S2 (s) = 0.

We use this theorem to construct a sequence {C(n)}n≥1 of linear codes of
rate R such that the rate of their S2-constrained subcodes obeys

lim inf
n→∞

rate
(
C(n)
2

)
> R − 1

2
.

We thus obtain rates better than the coset-averaging bound of
[Patapoutian and Kumar (1992)], using subcodes!
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Computation of Fourier coefficients and consequences

Theorem
There exists a vector space V such that for s ∈ V ,

1̂S2 (s) = 2⌊
n
2⌋−n · (−1)γ(s),

where γ : {0, 1}n → {0, 1}. Further, for s /∈ V , we have 1̂S2 (s) = 0.

We can also use the theorem to count S2-constrained codewords in
well-known linear codes:

(m, r) (5, 3) (6, 4) (7, 5) (8, 6)
N(RM(m, r);S2) 2048 6.711× 107 1.441× 1017 1.329× 1036

Some sample numerical values for high rate RM codes
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Example 2: (d ,∞)-RLL constraint

▶ Recall:

(d ,∞)-RLL ≡ at least d 0s b/w successive 1s

▶ Let Sd denote the set of constrained sequences and 1̂Sd

(n)
denote

the Fourier transform at blocklength n ≥ 1.

Theorem
For n ≥ d + 2 and for s = (s1, . . . , sn) ∈ {0, 1}n,

1̂Sd

(n)
(s) = 2−1 · 1̂Sd

(n−1)
(sn2 ) + (−1)s1 · 2−(d+1) · 1̂Sd

(n−d−1) (
snd+2

)
.
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1̂Sd

(n)
(s) = 2−1 · 1̂Sd

(n−1)
(sn2 ) + (−1)s1 · 2−(d+1) · 1̂Sd

(n−d−1) (
snd+2

)
.

The recursive procedure arising from the above theorem is faster
for computing Fourier transforms than the Fast Walsh-Hadamard

Transform!
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▶ Recall:
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denote

the Fourier transform at blocklength n ≥ 1.

Theorem
For n ≥ d + 2 and for s = (s1, . . . , sn) ∈ {0, 1}n,

1̂Sd

(n)
(s) = 2−1 · 1̂Sd

(n−1)
(sn2 ) + (−1)s1 · 2−(d+1) · 1̂Sd

(n−d−1) (
snd+2

)
.

Similar recurrence relations can also be proved for the flash
memory (“no-101”) constraint and a version of the even

constraint, which requires that the length of every run of 0s be
even.
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Coding Schemes Over Input-Constrained Channels

Part II: Input-Constrained Adversarial Error Channels

xn Zero-Error

Decoder

y n m̂m ∈
[
2nR

] . . .0 1 k
0

0

0

0

11

(Arbitrary) Constrained Encoder

Adversarial
Error Channel

2

1

e
n ≤ p ∈ (0, 1)



The problem

Consider the transmission of constrained sequences over a combinatorial
bit-flip error channel:

xn Zero-Error

Decoder

y n m̂m ∈
[
2nR

] . . .0 1 k
0

0

0

0

11

(Arbitrary) Constrained Encoder

Adversarial
Bit-Flip

Error Channel2

1

e
n ≤ p ∈ (0, 1)

▶ The error-correcting capability of a constrained code over such a
channel is determined by its minimum Hamming distance.

Min. Hamming dist. is d ⇐⇒ Bounded dist. decoder can correct ≈ d/2
errors and detect ≈ d errors

What is the largest size of a t-error correcting constrained code?
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A more formal description

Fix a blocklength n ≥ 1. Suppose that we are given a constraint
represented by the set A ⊆ {0, 1}n of constrained sequences.

What is the size of the largest subset of A having
minimum Hamming distance at least d?

The 4-dimensional binary Hamming space

Let us call the size of a largest collection A(n, d ;A).

When A = {0, 1}n, we call this size simply A(n, d).
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Flashback: Delsarte’s LP (for unconstrained systems)

Consider the LP Del(n, d):

maximize
n∑

w=0

aw

subj. to aw ≥ 0, for all w ∈ [0 : n],

n∑
j=0

aj · Kw (j) ≥ 0, for all w ∈ [0 : n],

aw = 0, for w ∈ [1 : d − 1],

a0 = 1,

where Kw = K
(n)
w is the w th-Krawtchouk polynomial at length n. Here,

Kw (j) =
w∑

ℓ=0

(−1)ℓ
(
j

ℓ

)(
n − j

w − ℓ

)
.
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Consider the LP Del(n, d):

maximize
n∑

w=0

aw

subj. to aw ≥ 0, for all w ∈ [0 : n],

n∑
j=0

aj · Kw (j) ≥ 0, for all w ∈ [0 : n],

aw = 0, for w ∈ [1 : d − 1],

a0 = 1,

▶ From [Delsarte (1973)]: a feasible solution is the distance
distribution (bw : 0 ≤ w ≤ n) of any binary length-n code C of
minimum distance at least d .

▶ Objective value of solution is |C|.
▶ Hence, A(n, d) ≤ OPT(Del(n, d)).
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Our LP for constrained systems

Fix A ⊆ {0, 1}n. Consider the LP Del(n, d ;A):

maximize
f : {0,1}n→R

∑
x∈{0,1}n

f (x)

subject to:

f (x) ≥ 0, ∀ x ∈ {0, 1}n,

f̂ (s) ≥ 0, ∀ s ∈ {0, 1}n,
f (x) = 0, if 1 ≤ w(x) ≤ d − 1,

f (0n) ≤ OPT(Del(n, d)), (C1)

f (x) ≤ 2n · (1A ⋆ 1A)(x), ∀ x ∈ {0, 1}n. (C2)

Theorem

A(n, d ;A) ≤ (OPT(Del(n, d ;A)))1/2.
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f (0n) ≤ OPT(Del(n, d)), (C1)

f (x) ≤ 2n · (1A ⋆ 1A)(x), ∀ x ∈ {0, 1}n. (C2)

▶ Here, f = 2n · (1C∩A ⋆ 1C∩A) is feasible, with

val(f ) = |C ∩ A|2.

Theorem

A(n, d ;A) ≤ (OPT(Del(n, d ;A)))1/2.
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Example 1: (d ,∞)-RLL constraint

Let us run Del(n, d ;S1) with n = 101:

d Del(n, d ;S1) GenSph(n, d ;S1) Del(n, d)

3 74.762 111 85.333
4 42.048 111 42.667
5 12 63 12
6 6 63 6
7 3.2 26 3.2

1The upper bounds can be rounded down to yield integral bounds on code sizes.
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Example 1: (d ,∞)-RLL constraint

. . . and Del(n, d ;S2) with n = 101:

d Del(n, d ;S2) GenSph(n, d ;S2) Del(n, d)

3 32.075 46.5 85.333
4 21.721 46.5 42.667
5 7.856 34 12
6 4.899 34 6
7 2.529 19 3.2

1The upper bounds can be rounded down to yield integral bounds on code sizes.
32 / 37



Example 1: (d ,∞)-RLL constraint
. . . and Del(n, d ;S2) with n = 101:

d Del(n, d ;S2) GenSph(n, d ;S2) Del(n, d)

3 32.075 46.5 85.333
4 21.721 46.5 42.667
5 7.856 34 12
6 4.899 34 6
7 2.529 19 3.2

1. We have that

(OPT(Del(n, d ;A)))1/2 ≤ min{OPT(Del(n, d)), |A|}.

2. The computability of the Fourier transforms 1̂A can be
harnessed to compute 1A ⋆ 1A(x).

3. For many constraints, the LP can be symmetrized to yield
non-trivial savings in complexity.

1The upper bounds can be rounded down to yield integral bounds on code sizes.
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Open questions for further research



Open questions

▶ Is it possible to prove (analytically) that the capacity of a
(d ,∞)-RLL input-constrained BSC(p) obeys

Cd(p) ≥ κd(1− hb(p)) ? [Wolf’s Conjecture (1988)]

▶ Can one derive asymptotic upper bounds on the rate-distance
tradeoff for constrained codes, using our LP formulation?

▶ Can we use data-driven methods to construct good codes for other
channels with memory? 2

2Our recent work on sampling-based methods for approximately computing the
sizes of “small” subcodes of RM codes is at https://arxiv.org/abs/2309.08907.
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spaces [outside this thesis]

“Lending perspective via cross-disciplinary connections”

37 / 37



Tools employed

Mostly Standard

1. Information theory

2. Error-control coding

3. Dynamic programming and
Markov decision processes

Mostly Non-Standard

A. Stochastic approximation

B. Fourier analysis

C. Sampling from high-dimensional
spaces [outside this thesis]

“Lending perspective via cross-disciplinary connections”

37 / 37



Tools employed

Mostly Standard

1. Information theory

2. Error-control coding

3. Dynamic programming and
Markov decision processes

Mostly Non-Standard

A. Stochastic approximation

B. Fourier analysis

C. Sampling from high-dimensional
spaces [outside this thesis]

“Lending perspective via cross-disciplinary connections”

37 / 37



Acknowledgements







Prof. Henry Pfister (Duke U.), for the stimulating discussions

My UG research advisers, Prof. Lalitha Vadlamani of IIIT-H (L) and Prof.
Prajakta Nimbhorkar of CMI (R), for initiating me into research



Labmates and Veena ma’am, for the bright and lively atmosphere in the lab



Thank You!


