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What is the talk about?

The decoder obtains d noisy views of an input sequence.
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Q1: What rates are achievable, with vanishing reconstruction error
probability?

Q2: How many views are required on average to exactly reconstruct a
sequence?
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Whence does this problem arise? - |

» Short molecules in a DNA pool are “amplified” by Polymerase Chain
Reaction (PCR) and sampled multiple times [Shomorony and Heckel

(2022)].
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Whence does this problem arise? - |

» Short molecules in a DNA pool are “amplified” by Polymerase Chain
Reaction (PCR) and sampled multiple times [Shomorony and Heckel

(2022)].
—

Random
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» The capacity is determined by mutual information terms
corresponding to different # of views of the input sequence; see

[Lenz et al. (2019, 2020), Shomorony and Heckel (2022), Weinberger and
Merhav (2022)].
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Whence does this problem arise? - Il

» Errors due to synchronization in packet-switched communications
and in reading magneto-optical media
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» Each output “run” at the end of (noisy) duplications corresponds to
a multi-view channel [Mitzenmacher (2008), Cheraghchi and Ribeiro
(2019)]
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Whence does this problem arise? - Il

» Experimentally accurate channel models for DNA nanopore

sequencers [McBain and Viterbo (IEEE-BITS 2023), McBain, Viterbo,
Saunderson (2024)]
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» The channel model is a noisy duplication channel (with a specific
input process).
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Whence does this problem arise? - IV

» More fundamentally, in the iterative decoding of LDPC codes
[Gallager (1962), Richardson and Urbanke (2001)]

» A single variable node receives multiple "views” /estimates of its
value, from different check nodes.
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Answering Q1 in the large view limit



A simpler setting: Multi-view DMCs



The setting, revisited

The decoder obtains d independent, noisy views of an input symbol.
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The decoder obtains d independent, noisy views of an input symbol.
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Since a multi-view DMC is also a DMC, it suffices for us to focus
on the transmission of a single symbol, for rate computations.
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The setting, revisited

The decoder obtains d independent, noisy views of an input symbol.
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Goal: Exact asymptotics of the mutual info. (4 capacity) and
dispersion of such a multi-view channel, for arbitrary Px.
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What is known about this setting?

» Hellman and Raviv (1970), Kanaya and Han (1995): Exact asymptotics of
information rates over DMCs with multiple views

» Levenshtein (2001): Characterization of # of views for exact
reconstruction over comb. error channels and for reconstruction with
decaying error prob. over multi-view DMCs
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Hellman and Raviv (1970), Kanaya and Han (1995): Exact asymptotics of
information rates over DMCs with multiple views

Levenshtein (2001): Characterization of # of views for exact
reconstruction over comb. error channels and for reconstruction with
decaying error prob. over multi-view DMCs

Land et al. (2005), Land and Huber (2006): Bounds on the mutual
information rates over multi-view DMCs via information combining
Mitzenmacher (2006): Calculation of the capacity of a multi-view binary
symmetric channel (BSC)

Haeupler and Mitzenmacher (2014): Information rates over multi-view
deletion channels when Pr[deletion] — 0.

Batu et al. (2004), Cheraghchi et al. (2020), Peres and Zhai (2017):
Trace reconstruction over the deletion channel

Our contributions:

1. Unified treatment of info. rate and channel dispersion

I

Finite-blocklength achievable rates with fixed error probability
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2. Directly extensible proofs for multi-letter channels ]
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Hellman and Raviv (1970), Kanaya and Han (1995): Exact asymptotics of
information rates over DMCs with multiple views

Levenshtein (2001): Characterization of # of views for exact
reconstruction over comb. error channels and for reconstruction with
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information rates over multi-view DMCs via information combining
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symmetric channel (BSC)

Haeupler and Mitzenmacher (2014): Information rates over multi-view
deletion channels when Pr[deletion] — 0.

Batu et al. (2004), Cheraghchi et al. (2020), Peres and Zhai (2017):
Trace reconstruction over the deletion channel

QOur _contributions:

[ 3. Non-asymptotic capacity bounds for multi-view BIMS channels ]
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Background



Some formalism

» Consider a DMC W with input alphabet X’ and output alphabet ),
both finite. Assume that |X|, || do not depend on d.

» The d-view DMC W(? obeys the channel law

d

W ((y,....yq) | x) = H W(y; | x),

for (y1,...,y4) € Y9 and x € X.
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Some formalism

» Consider a DMC W with input alphabet X’ and output alphabet ),
both finite. Assume that |X|, || do not depend on d.

» The d-view DMC W(? obeys the channel law

d

W ((y,....yq) | x) = H W(y; | x),

for (y1,...,y4) € Y9 and x € X.
» Fix a d-independent input distribution Px. We are interested in:
1@ = 1(X; Y)Y = H(X) = H(X | Y¥)  [Mutual info.]
and

V@ — & [(u(x; Yf’)—/<d))2}, [Channel dispersion]

where
P(Y? | X)

y(X; Y9 = log PV

[Info. spectrum]
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Building intuition: Multi-view BSC(¢)

Consider the d-view BSC(p), with binary input X € {0,1}:
Y =X+ Z (mod 2),

where Z ~ Ber(p).
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Building intuition: Multi-view BSC(¢)

Consider the d-view BSC(p), with binary input X € {0,1}:
Y =X+ Z (mod 2),

where Z ~ Ber(p). Suppose that X ~ Ber(1/2).
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Building intuition: Multi-view BSC(¢)

X »
BSC(p)
Yy
. B5C(p) - , d_
» Given outputs Y = (Yi,..., Yq),
xe{O.l}' x VW 2] (V1 ¥a) . compute
M = Majority(Y*).
X Yd
B5C(p)
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Building intuition: Multi-view BSC(¢)

BSC(p)

> Given outputs Y¢ = (Y1,..., Ya),
x ¥ compute

M = Majority(Y?).
xe{O,l}‘ X "?‘ ys Viy- - ¥a) R ajori Y( )

» Then,

1(X; Y9) > 1(X; M)
g B " = log 2 — hp(Pr[X # M]).
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Building intuition: Multi-view BSC(¢)

> Given outputs Y7 = (Y1,..., Ya),

compute
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X Y2

= » Then
x€{0,1} X s n )
g H o | — 106 Y9) > 1(X: M)
= log2 — hp(Pr[X # M]).

X ] s SN » By the Chernoff bound,

> >

Pr[X # M] < exp(—dZ(p)),

where Z(p) = 2+/p(1 — p).
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Building intuition: Multi-view BSC(¢)

> Given outputs Y9 = (Y1,..., Ya),

compute

SN - J

(e M = Majority(Y").
X Y2

= » Then
x€{0,1} X I s n )
" g — 1(X; Y9) > 1(X; M)
= log2 — hp(Pr[X # M]).

] s ¥ » By the Chernoff bound,

> >

Pr[X # M] < exp(—dZ(p)),

where Z(p) = 2+/p(1 — p).

Hence, for large d:
hp(Pr[X # M]) < =2Pr[X # M] - log Pr[X # M]
= 2dZ(p) - exp(—dZ(p)).
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Building intuition: Multi-view BSC(¢)

X ] n
»| BSC(p)
L]
X Y2
B5C(p)
xe{o.l}‘ x "BST()‘ 3 (y1,
> > P,
L1
X [ Yd
» BSC(p)
L]

This gives us

> Given outputs Y9 = (Y1,..., Ya),
compute

M = Majority(Y?).
» Then,

1(X; Y9) > 1(X; M)
= log 2 — hy(Pr[X # M]).

» By the Chernoff bound,
PrIX # M] < exp(—dZ(p)),

where Z(p) = 2+/p(1 — p).

I(X; Y9) > log2 —2dZ(p) - exp(—dZ(p)).

Exponentially fast convergence to H(X) = Iog2‘

10/32



Our Results



Our main result
> Intuitively, as d becomes large, we expect /(¥ ~ H(X) and

V@~ V(X) =E[(log P(X)+H(X))?].
——
i/p varentropy

11/32



Our main result
> Intuitively, as d becomes large, we expect /(¥ ~ H(X) and

V@~ V(X) =E[(log P(X)+H(X))?].
——
i/p varentropy

» For distributions P, Q on X, define the Chernoff information

C(P7Q)—— m|n Iog (ZP l ’\Q )

11/32



Our main result
> Intuitively, as d becomes large, we expect /(¥ ~ H(X) and

V@~ V(X) =E[(log P(X)+H(X))?].
——
i/p varentropy

» For distributions P, Q on X, define the Chernoff information

C(P7Q)—— m|n Iog (ZP l ’\Q )

Theorem
When X,), Px do not depend on d,

119) = H(X) — exp (—dp + O(log d|X])), and
vid) _ V(X)| =exp(—dp+ ©(log d|X])),

where
P = min C(Py‘X,Pylx/).

X, x": x#x!
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Interpreting the result

» The rate of convergence p of the mutual information and channel
dispersion to their limits

p=_min C(Py, Py)

x,x": x#x'

is independent of the input distribution (except via its support)!
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Interpreting the result

» The rate of convergence p of the mutual information and channel
dispersion to their limits

p=_min C(Py, Py)

x,x": x#x'
is independent of the input distribution (except via its support)!

» For a binary-input memoryless symmetric (BIMS) channel W, the
rate

p=—1og > \/Prioly | 0)Pypsly | 1)

yey
= —log Zp(W),

where Z,(W) is the Bhattacharya parameter of the BIMS W.

‘ Hence, our earlier speed of convergence for the BSC(?) is tight!
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A finite blocklength corollary

» A characterization of finite-blocklength rates achievable over wid),
thus follows.
» For a fixed € € (0,1) and blocklength n > 1, let
M*(n, €)  largest M s.t. 3 length-n code over W)

with max. error ¢.
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A finite blocklength corollary

» A characterization of finite-blocklength rates achievable over wid),

thus follows.

» For a fixed € € (0,1) and blocklength n > 1, let
M*(n, €)  largest M s.t. 3 length-n code over W)

with max. error ¢.

Theorem
log M*
IOg|X| _ Og n(n76)

< efdp+@(logd\/\,’\) . (Dil(e) X

If W is “non-singular” (think unlike a BEC), we have

e—dp/2+6(log d|X|)

log n

NG

°

n

)
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A finite blocklength corollary
» A characterization of finite-blocklength rates achievable over wid),
thus follows.
» For a fixed € € (0,1) and blocklength n > 1, let
M*(n, €)  largest M s.t. 3 length-n code over W)

with max. error ¢.

Theorem
If W is “non-singular” (think unlike a BEC), we have

log M*(n, e
g || - &M (1.9

—dp/24+O(log d|X
< e~drtOlosdi X)) _ ¢-1((). p/2+Ologd] ')+e<|ogn).

- Vn

n

» In particular, choosing d = p~!log n, we can achieve rates

Rn. > log|X| — O ('°§").
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Proof Sketch I: BIMS channels
——

bin.-i/p, memoryless, symmetric



Background on BIMS channels

A BIMS channel obeys:
Y =(-1)%.Z,

for noise Z independent of X.

Examples:
1—¢ 1-p
0 1 0 v 1
EO
. A
1 —1 1 —1
1—e¢ 1—-p

Binary Erasure Channel (BEC) Binary Symmetric Channel (BSC)
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Proof for BIMS channels with uniform inputs

Consider /(9 for BIMS channels W with Px = Ber(1/2).
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Proof for BIMS channels with uniform inputs

Consider /(%) for BIMS channels W with Px = Ber(1/2).

Lower bound: H(X | Y?) > e~?*6(lcgd)
We have

HX | YY) =E [Iog P(le} .

Note that in the binary hypothesis testing problem

Pyajo
0

Px Y1,...,Ya)
Py
1

the probability of correct decision is

E[P(X | Y9)] =1— e X(ProwPren)00osd) _ 1 _ g=dp+E(log)

15/32



Proof for BIMS channels with uniform inputs

Consider /(%) for BIMS channels W with Px = Ber(1/2).

Lower bound: H(X | Y?) > e~?*6(lcgd)
We have

HX | YY) =E [Iog P(le} .

Note that in the binary hypothesis testing problem

Pyajo
0

Px (Y1,.-., Ya)
Pyay
1
the probability of correct decision is

E[P(X | Y9)] =1— e X(ProwPren)00osd) _ 1 _ g=dp+E(log)

Applying Jensen's inequality + a little algebra finishes the proof. [
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Proof for BIMS channels with uniform inputs

Consider /(%) for BIMS channels W with Px = Ber(1/2).

Upper bound: H(X | YY) < e=9°
A well-known lemma [e.g., Sasoglu (2012)]: for Px = Unif({0,1}),

H(X | Y) < Z(W).
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A well-known lemma [e.g., Sasoglu (2012)]: for Px = Unif({0,1}),
HX |Y)<Z(W).

Here, W(9) is also a BIMS channel, with

HX | Y9 < Z(WD) = Z(W)d = e, []

15/32



Proof for BIMS channels with uniform inputs

Consider /(%) for BIMS channels W with Px = Ber(1/2).

Upper bound: H(X | YY) < e=9°

A well-known lemma [e.g., Sasoglu (2012)]: for Px = Unif({0,1}),
HX |Y)<Z(W).

Here, W(9) is also a BIMS channel, with

HX | Y9 < Z(WD) = Z(W)d = e, []

» [Hellman & Raviv (1970), Kanaya & Han (1995)] (or, our lower
bound+[Levenshtein (2001)] and [Shannon, Gallager, Berlekamp
(1967)]) allows us to complete a proof for general DMCs W.

» Our approach: a unified proof for /(9 and V() that allows for
finite-blocklength results-+multi-letter extensions.
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Proof Sketch II: General DMCs



Sketch of proof strategy for general DMCs

Consider the mutual information /(9 for fixed Px.

> We write

HX | Y)=E [Iog P(X1|W)]

1
= Z Px(x)E [Iog B[V

xEX

=
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Sketch of proof strategy for general DMCs

Consider the mutual information /(9 for fixed Px.

> We write

HX | Y)=E [Iog P(X1|W)]

1
= );Y Px(x)E [Iog B[V

=

» Fix an x € X and focus on the inner term:

X—x] —/OOOPr[IogP(XTmzt‘X—X} dt.

1
" ['°g PX | Y9)
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Sketch of proof strategy for general DMCs

Consider the mutual information /(9 for fixed Px.

> We write

HX | Y)=E [Iog P(X1|W)]

1
= );Y Px(x)E [Iog B[V

=

» Fix an x € X and focus on the inner term:

X—x] —/OOOPr[IogP(XTmzt‘X—X} dt.

Let pe(t) := Pr[—log Pxjya(x | Y¥) > t|X = x].

1
" ['°g PX | Y9)
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Bounding p,(t)

Proposition
We have that

px(t) > maxPr

d —(t—log(|X|-1))
Pt o [POOP(YY ) _ emtitost
(JX] = 1) = x#x P(X)P(Y?| %) 1—et
and

X#£x

sz]
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Bounding p,(t)

Proposition
We have that
d —(t—log(|X[-1))
L) e [PRP2 1)
(1% —1) P(R)P(Y? | %) l1—et
and
)P(Y9 | x) e’
t) > P X
Pu(t) Z maxPr| 5 o v [R) S Toet X =~

sz]

Hence, let us concentrate on terms of the form

. P(x)P(Y? | x) ce ?
Fxx(z) := Pr lP()?)P(YC’ %) S 1—ez

for ¢ > 0.

X =x

)

17/32



Controlling the integral
Recall that we are primarily interested in
px(t) ~ ee(bg‘X‘) . mix rX,)?(Z)a

for suitable values of ¢, z, via [ px(t)dt.

The following observation then holds:

7

Lemma
We have that

X#x X#x

/ max I, z(z)dz = e®0o81*D . max/ Ik x(z)dz.
0 0
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Controlling the integral
Recall that we are primarily interested in
px(t) ~ ee(bg‘Xl) . rp;gx rX,)?(Z)a

for suitable values of ¢, z, via [ px(t)dt.

The following observation then holds:

7

Lemma
We have that

/ max I, z(z)dz = e®0o81*D . max/ Ik x(z)dz.
0 0

X#£Xx X#£Xx

Via Sanov's theorem+Laplace's method, it is possible to show that

o0
/ I'X,;(z)dz — e@(log d|x]) . efd~min;;/x C(PY‘X,P”;).
0

18/32



Putting everything together

Recall that we were ultimately interested in

x=x| = [P flog Ty 2
—/Ooopx(t)dt

~ ee(log\X\) / maeri(Z)dZ
o FAx

1

— Ollogd|X]) | g—d-mings C(Pyx;Pyis)
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Putting everything together

Recall that we were ultimately interested in

x=x| = [P flog Ty 2
—/Ooopx(t)dt

~ ee(log\X\) / maeri(Z)dz
o FAx

1

— Ollogd|X]) | g—d-mings C(Pyx;Pyis)

Hence, we have shown that

H(X | Yd) ~ e@(logd|X|) . e—d~min;#XC(Py|x,Py‘;)’

with p = ming C(Py|x, Py|s)-

19/32



Proof sktech for channel dispersion

Consider the channel dispersion V(¢ for fixed Px.
> We write
v —E [(L(X; y?) - /(d>)2}
=V(X) + (E [(log P(X | Y¥)*] = HOX | Y9)?) + 6,

where

0y =2-FE [(log P(X|Y?) +H(X|Y?) - (Iog L H(X))} :

P(X)
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Proof sktech for channel dispersion

Consider the channel dispersion V(¢ for fixed Px.
> We write
v —E [(L(X; y?) - /(d>)2}
=V(X) + (E [(log P(X | Y¥)*] = HOX | Y9)?) + 6,

where

0y =2-FE [(log P(X|Y?) +H(X|Y?) - <Iog (IX) — H(X))} :

> Using an integral-based approach (as earlier), we can obtain that
E[(log P(X | Y9))°| = e~dr+elosdix),

> From the earlier proof, we know that H(X | Y9) = e~dr+6(logd| X)),

» The cross-term 64 can be handled by “averaging” over x € X.
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Multi-view multi-letter channels



Extensions to multi-letter channels

» Our main result can be extended to multi-letter channels, including
synchronization channels with equal output length across views.

» Consider such a multi-letter channel W, of input length n, with

d
W D (yr, o yg [ x") =] Walyi | x")
i=1

» Multi-letter variants of the mutual information I,Sd) and dispersion
V,Sd) can be defined similar to earlier.
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Extensions to multi-letter channels

» Our main result can be extended to multi-letter channels, including

synchronization channels with equal output length across views.

» Consider such a multi-letter channel W, of input length n, with

d
W D (yr, o yg [ x") =] Walyi | x")
i=1

» Multi-letter variants of the mutual information I,Sd) and dispersion

V,Sd) can be defined similar to earlier.

Theorem
We have that

19 = H(X") — exp (—dp, + O(nlog d|X])), and
VI —\/(X")| = exp (—dpn + O(nlog d|X])),

where

Pn — min C(Py‘un7PY‘l’;n).

un an:un#£an

J
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Computations for the deletion channel

Consider the deletion channel Del(§) that, on input u" € {0,1}", deletes
each symbol u; independently w.p. § € (0,1).

01001011—00011

Theorem
For Del(0), where 6 € (0,1), we have that

limsup p, < —logd.

n—oo
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Computations for the deletion channel

Consider the deletion channel Del(§) that, on input u" € {0,1}", deletes
each symbol u; independently w.p. § € (0,1).

01001011—00011

Theorem
For Del(0), where 6 € (0,1), we have that

limsup p, < —logd.

n—oo

» The proof follows by obtaining upper bounds on p, by choosing
special sequences x", X".

» The rate of convergence p, for Del(d), for large enough n, is hence
much slower than that of an n-letter DMC W, for which

po(Wa) = - p(W).
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Non-Asymptotic Bounds on Capacity



Non-asymptotic bounds for the BSC(?)

Consider the BSC(?)(p). We introduce a closely related DMC Poiy(p).

BSC()(p)

> BSC(p)

BSC(p)

»n

y2

x €10, 1}‘ x JS_‘

x € {0,1}
—

Poia(p)

(n,r)

Pg,jo = Poi(d(1 — p)), Pg,j1 = Poi(dp)
Pg,j1 = Poi(d(1 — p)), Pg,jo = Poi(dp)
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Non-asymptotic bounds for the BSC(?)
Consider the BSC(?)(p). We introduce a closely related DMC Poiy(p).

BSC(p) Poig(p)

x N
—»{ BSC(p)

X n
X Y2
BSCl xe {0,1
(p) {0,1}

(n,r)

xeloy)  x s " D) —XP 2
Bl
Prjo = Poi(d(1 — p)), Pg,j1 = Poi(dp)
e BN Py = Poi(d(1 — p)), Prjo = Poi(dp)
[
Theorem

C(Poia(p)) < C(Bina(p)) < C(Poig(p)) + e~ 42D _ Z(p)?,

where Z(p) = 2+/p(1 — p).
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Plots and comparisons

Capacities

Plots comparing C(Bing(p)) and C(Poig(p)), for varying d.

24 /32



A corollary for BIMS channels

» Any BIMS channel W with a finite output alphabet can be

decomposed as
K

- (1)
WY\X:X = € - Wy|X:X7
i=1

where W»(/i\)x:x is the channel law of a BSC with crossover
probability p;, and €¢; > 0, with ), ¢; = 1.
> Let Ps be the distribution on {1,..., K} with mass ¢; at point /.
COW) = E[C(h,.... Ja)],

where J; %8 P, 1< i< K.
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A corollary for BIMS channels

» Any BIMS channel W with a finite output alphabet can be

decomposed as
K

- (1)
WY\X:X = € - Wy|X:X7
i=1

where W»(/i\)x:x is the channel law of a BSC with crossover
probability p;, and €¢; > 0, with ), ¢; = 1.
> Let Ps be the distribution on {1,..., K} with mass ¢; at point /.
CW)=E[C(h,...,J)],
where J; %8 P, 1< i< K.
» Now, suppose that 0 < p; < pp < ... < px < 1/2. Then,

Corollary
C(Poia(p)) < CO(W)
< C(Poig(p1)) + exp(—d(1 — Z(p1))) — Z(p1)**.
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Towards Q2: Extending Levenshtein's results to the
average case



The setting

Consider the following special setting:

X o | Channel Y1
> £

X Channel Y2
AN
£®

x € {0,1}" X Channel Y3 (Y15, Ya)

| X o | Channel Yd N
> £@ >

d distinct views

A4

» The views yi,...,Yyq are distinct and are drawn uniformly, without
replacement, from a t-substitution error sphere around x, i.e.,

yi = x+e;, where wy(e;) =t and ey, ..., ey are distinct.
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Some comments

» This setting is a generalization of the classical problem in
[Levenshtein (2001)], wherein the (distinct) errors ey, ..., e4 were
adversarially drawn from the Hamming sphere of radius t.
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Some comments

» This setting is a generalization of the classical problem in
[Levenshtein (2001)], wherein the (distinct) errors ey, ..., e4 were
adversarially drawn from the Hamming sphere of radius t.

> From [Levenshtein (2001)], it can be argued that

Dec(y1,...,¥d) = X,

for all x € {0,1}", only if d > Ny := 2(;’:%) for any decoder Dec.

» Moreover, Levenshtein argued that the bit-wise majority decoder
DecMaj(yl, oo Yd) = (Maj(yvas - Yda)s - Maj(vany - - Ydon)
is “optimal”, in that
DecMi(yy,...,yq) = X,

for all x € {0,1}", whenever d > N|e,.
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How does Dec™¥ perform in the average case?

Fix the bit-wise majority decoder Dec™. Given views Yis---sYd,
construct the array
Y11 | vi2 yin| Y1
Y21 y2
M(y1,...,¥q) = y3
Yd.1 Yd.n Yd

Let m(n, t, d) denote the number of distinct arrays M(ys,...,yq) that
lead to correct reconstruction of x via DecMai.
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A recurrence relation for estimating m(n, t, d)

From the structure of the DecM¥ decoder, the following lemma holds:

Lemma
We have that

m(n,t,d) > m(n—3,t,d)+m(n—3,t—1,d) - aq,

d
where ag = > (kl,kz,k3)'
kit+ko+ks=N

K,k ks < | 452 ]

» With the aid of suitable initial conditions
m(n,t,d) =0, ifd<3ord>n—3(t—1),

the above recurrence relation can be explicitly solved, giving a lower
bound on m(n, t, d).
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Estimating the average # of views for reconstruction

> Via the previous arguments, we can derive a lower bound on

m(n,t,d)
((?)) '

d

Pc(n,t,d) =

» This allows us to obtain an upper bound on E[# views for reconst.]
via a union-bound style argument.

» Moreover, we have the following lemma:

Lemma
When t = 1, we have

E[# views for reconst.] = N o, = 3.
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Future work

» Bounds/exact computation of p, for general synchronization
channels and other channels with memory

» Relating DecM? to the “optimal”’ decoder in terms of
E[# views for reconst.].
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Thank You!



