Multi-View Channels

V. Arvind Rameshwar India Urban Data Exchange

IIT Madras 2024

Joint work with

Prof. Nir Weinberger

(Technion, Israel)

Paraskevi (Vivian) Papadopoulou

Prof. Dr.-Ing. Antonia Wachter-Zeh

(TU Münich, Germany)

(TU Münich, Germany)

What is the talk about?

The decoder obtains d noisy views of an input sequence.

d views

What is the talk about?

The decoder obtains d noisy views of an input sequence.

Whence does this problem arise? - I

▶ Short molecules in a DNA pool are "amplified" by Polymerase Chain Reaction (PCR) and sampled multiple times [Shomorony and Heckel (2022)].

Whence does this problem arise? - I

▶ Short molecules in a DNA pool are "amplified" by Polymerase Chain Reaction (PCR) and sampled multiple times [Shomorony and Heckel (2022)].

 \blacktriangleright The capacity is determined by mutual information terms corresponding to different $#$ of views of the input sequence; see [Lenz et al. (2019, 2020), Shomorony and Heckel (2022), Weinberger and Merhav (2022)].

Whence does this problem arise? - II

▶ Errors due to synchronization in packet-switched communications and in reading magneto-optical media

▶ Each output "run" at the end of (noisy) duplications corresponds to a multi-view channel [Mitzenmacher (2008), Cheraghchi and Ribeiro (2019)]

Whence does this problem arise? - III

▶ Experimentally accurate channel models for DNA nanopore sequencers [McBain and Viterbo (IEEE-BITS 2023), McBain, Viterbo, Saunderson (2024)]

 \blacktriangleright The channel model is a noisy duplication channel (with a specific input process).

Whence does this problem arise? - IV

 \triangleright More fundamentally, in the iterative decoding of LDPC codes [Gallager (1962), Richardson and Urbanke (2001)]

 \triangleright A single variable node receives multiple "views" / estimates of its value, from different check nodes.

Answering $Q1$ in the large view limit

A simpler setting: Multi-view DMCs

The setting, revisited

The decoder obtains d independent, noisy views of an input symbol.

The setting, revisited

The decoder obtains d independent, noisy views of an input symbol.

Since a multi-view DMC is also a DMC, it suffices for us to focus on the transmission of a single symbol, for rate computations.

The setting, revisited

The decoder obtains d independent, noisy views of an input symbol.

Goal: Exact asymptotics of the mutual info. $(+)$ capacity) and dispersion of such a multi-view channel, for arbitrary P_X .

- ▶ Hellman and Raviv (1970), Kanaya and Han (1995): Exact asymptotics of information rates over DMCs with multiple views
- \blacktriangleright Levenshtein (2001): Characterization of $\#$ of views for exact reconstruction over comb. error channels and for reconstruction with decaying error prob. over multi-view DMCs

- ▶ Hellman and Raviv (1970), Kanaya and Han (1995): Exact asymptotics of information rates over DMCs with multiple views
- \blacktriangleright Levenshtein (2001): Characterization of $\#$ of views for exact reconstruction over comb. error channels and for reconstruction with decaying error prob. over multi-view DMCs
- ▶ Land et al. (2005), Land and Huber (2006): Bounds on the mutual information rates over multi-view DMCs via information combining
- ▶ Mitzenmacher (2006): Calculation of the capacity of a multi-view binary symmetric channel (BSC)
- ▶ Haeupler and Mitzenmacher (2014): Information rates over multi-view deletion channels when Pr[deletion] \rightarrow 0.
- ▶ Batu et al. (2004), Cheraghchi et al. (2020), Peres and Zhai (2017): Trace reconstruction over the deletion channel

- ▶ Hellman and Raviv (1970), Kanaya and Han (1995): Exact asymptotics of information rates over DMCs with multiple views
- \blacktriangleright Levenshtein (2001): Characterization of $\#$ of views for exact reconstruction over comb. error channels and for reconstruction with decaying error prob. over multi-view DMCs
- ▶ Land et al. (2005), Land and Huber (2006): Bounds on the mutual information rates over multi-view DMCs via information combining
- ▶ Mitzenmacher (2006): Calculation of the capacity of a multi-view binary symmetric channel (BSC)
- ▶ Haeupler and Mitzenmacher (2014): Information rates over multi-view deletion channels when Pr[deletion] \rightarrow 0.
- ▶ Batu et al. (2004), Cheraghchi et al. (2020), Peres and Zhai (2017): Trace reconstruction over the deletion channel

Our contributions:

1. Unified treatment of info. rate and channel dispersion ⇓ Finite-blocklength achievable rates with fixed error probability

- ▶ Hellman and Raviv (1970), Kanaya and Han (1995): Exact asymptotics of information rates over DMCs with multiple views
- \blacktriangleright Levenshtein (2001): Characterization of $\#$ of views for exact reconstruction over comb. error channels and for reconstruction with decaying error prob. over multi-view DMCs
- ▶ Land et al. (2005), Land and Huber (2006): Bounds on the mutual information rates over multi-view DMCs via information combining
- ▶ Mitzenmacher (2006): Calculation of the capacity of a multi-view binary symmetric channel (BSC)
- ▶ Haeupler and Mitzenmacher (2014): Information rates over multi-view deletion channels when Pr[deletion] \rightarrow 0.
- ▶ Batu et al. (2004), Cheraghchi et al. (2020), Peres and Zhai (2017): Trace reconstruction over the deletion channel

Our contributions:

2. Directly extensible proofs for multi-letter channels

- ▶ Hellman and Raviv (1970), Kanaya and Han (1995): Exact asymptotics of information rates over DMCs with multiple views
- \blacktriangleright Levenshtein (2001): Characterization of $\#$ of views for exact reconstruction over comb. error channels and for reconstruction with decaying error prob. over multi-view DMCs
- ▶ Land et al. (2005), Land and Huber (2006): Bounds on the mutual information rates over multi-view DMCs via information combining
- ▶ Mitzenmacher (2006): Calculation of the capacity of a multi-view binary symmetric channel (BSC)
- ▶ Haeupler and Mitzenmacher (2014): Information rates over multi-view deletion channels when $Pr[deletion] \rightarrow 0$.
- ▶ Batu et al. (2004), Cheraghchi et al. (2020), Peres and Zhai (2017): Trace reconstruction over the deletion channel

Our contributions:

3. Non-asymptotic capacity bounds for multi-view BIMS channels

Background

Some formalism

▶ Consider a DMC *W* with input alphabet *X* and output alphabet *Y*. both finite. Assume that $|\mathcal{X}|$, $|\mathcal{Y}|$ do not depend on d.

 \blacktriangleright The d-view DMC $W^{(d)}$ obeys the channel law

$$
W^{(d)}((y_1,\ldots,y_d)\mid x)=\prod_{i=1}^d W(y_i\mid x),
$$

for $(y_1,\ldots,y_d)\in\mathcal{Y}^d$ and $x\in\mathcal{X}$.

Some formalism

▶ Consider a DMC *W* with input alphabet X and output alphabet Y , both finite. Assume that $|\mathcal{X}|$, $|\mathcal{Y}|$ do not depend on d.

 \blacktriangleright The d-view DMC $W^{(d)}$ obeys the channel law

$$
W^{(d)}((y_1,\ldots,y_d) \mid x) = \prod_{i=1}^d W(y_i \mid x),
$$

for $(y_1,\ldots,y_d)\in\mathcal{Y}^d$ and $x\in\mathcal{X}$.

 \triangleright Fix a *d*-independent input distribution P_X . We are interested in: $I^{(d)} = I(X; Y^d) = H(X) - H(X | Y^d)$ [Mutual info.]

and

$$
V^{(d)} = \mathbb{E}\left[(\iota(X; Y^d) - I^{(d)})^2 \right], \qquad \text{[Channel dispersion]}
$$

where

$$
\iota(X; Y^d) = \log \frac{P(Y^d \mid X)}{P(Y^d)}.
$$
 [Info. spectrum]

Consider the d-view BSC(p), with binary input $X \in \{0, 1\}$:

$$
Y = X + Z \text{ (mod 2)},
$$

where $Z \sim \text{Ber}(p)$.

Consider the d-view BSC(p), with binary input $X \in \{0, 1\}$:

$$
Y = X + Z \text{ (mod 2)},
$$

where $Z \sim \text{Ber}(p)$. Suppose that $X \sim \text{Ber}(1/2)$.

Given outputs $Y^d = (Y_1, \ldots, Y_d)$, compute

$$
M = \text{Majority}(Y^d).
$$

Given outputs $Y^d = (Y_1, \ldots, Y_d)$, compute

$$
M = \text{Majority}(Y^d).
$$

▶ Then,

$$
I(X; Yd) \geq I(X; M)
$$

= log 2 - h_b(Pr[X \neq M]).

 \blacktriangleright Given outputs $Y^d = (Y_1, \ldots, Y_d)$, compute

$$
M = \text{Majority}(Y^d).
$$

 \blacktriangleright Then,

$$
I(X; Yd) \geq I(X; M)
$$

= log 2 - h_b(Pr[X \neq M]).

▶ By the Chernoff bound,

 $Pr[X \neq M] \leq exp(-dZ(p)),$

where
$$
Z(p) = 2\sqrt{p(1-p)}
$$
.

Given outputs $Y^d = (Y_1, \ldots, Y_d)$, compute

$$
M = \text{Majority}(Y^d).
$$

▶ Then,

$$
I(X; Yd) \geq I(X; M)
$$

= log 2 - h_b(Pr[X \neq M]).

▶ By the Chernoff bound,

$$
\Pr[X \neq M] \leq \exp(-dZ(p)),
$$

where
$$
Z(p) = 2\sqrt{p(1-p)}
$$
.

Hence, for large d:

$$
h_b(\Pr[X \neq M]) \le -2 \Pr[X \neq M] \cdot \log \Pr[X \neq M]
$$

= 2dZ(p) \cdot \exp(-dZ(p)).

Given outputs $Y^d = (Y_1, \ldots, Y_d)$, compute

$$
M = \text{Majority}(Y^d).
$$

 \blacktriangleright Then,

$$
I(X; Yd) \ge I(X; M)
$$

= log 2 - h_b(Pr[X \ne M]).

By the Chernoff bound,

$$
\Pr[X \neq M] \leq \exp(-dZ(p)),
$$

where
$$
Z(p) = 2\sqrt{p(1-p)}
$$
.

This gives us

$$
I(X;Y^d) \geq \log 2 - 2dZ(p) \cdot \exp(-dZ(p)).
$$

Exponentially fast convergence to $H(X) = \log 2$

Our Results

Our main result

▶ Intuitively, as d becomes large, we expect $I^{(d)} \approx H(X)$ and

$$
V^{(d)} \approx \underbrace{V(X)}_{i/p \text{ varentropy}} = \mathbb{E}\left[(\log P(X) + H(X))^2 \right].
$$

Our main result

▶ Intuitively, as d becomes large, we expect $I^{(d)} \approx H(X)$ and

$$
V^{(d)} \approx \underbrace{V(X)}_{i/p \text{ varentropy}} = \mathbb{E}\left[(\log P(X) + H(X))^2 \right].
$$

 \blacktriangleright For distributions P, Q on X, define the Chernoff information

$$
C(P,Q) = - \min_{\lambda \in [0,1]} \log \left(\sum_{x \in \mathcal{X}} P(x)^{1-\lambda} Q(x)^{\lambda} \right).
$$

Our main result

▶ Intuitively, as d becomes large, we expect $I^{(d)} \approx H(X)$ and

$$
V^{(d)} \approx \underbrace{V(X)}_{i/p \text{ varentropy}} = \mathbb{E}\left[\left(\log P(X) + H(X)\right)^2\right].
$$

 \blacktriangleright For distributions P, Q on X, define the Chernoff information

$$
C(P,Q) = - \min_{\lambda \in [0,1]} \log \left(\sum_{x \in \mathcal{X}} P(x)^{1-\lambda} Q(x)^{\lambda} \right)
$$

Theorem

When X, Y, P_X do not depend on d,

$$
I^{(d)} = H(X) - \exp(-d\rho + \Theta(\log d|\mathcal{X}|)), \text{ and}
$$

$$
|V^{(d)} - V(X)| = \exp(-d\rho + \Theta(\log d|\mathcal{X}|)),
$$

where

$$
\rho = \min_{x,x': x \neq x'} C(P_{Y|x}, P_{Y|x'}).
$$

.

Interpreting the result

 \blacktriangleright The rate of convergence ρ of the mutual information and channel dispersion to their limits

$$
\rho = \min_{x, x': x \neq x'} C(P_{Y|x}, P_{Y|x'})
$$

is independent of the input distribution (except via its support)!

Interpreting the result

 \blacktriangleright The rate of convergence ρ of the mutual information and channel dispersion to their limits

$$
\rho = \min_{x, x': x \neq x'} C(P_{Y|x}, P_{Y|x'})
$$

is independent of the input distribution (except via its support)!

 \triangleright For a binary-input memoryless symmetric (BIMS) channel W, the rate

$$
\rho = -\log \sum_{y \in \mathcal{Y}} \sqrt{P_{Y|0}(y | 0) P_{Y|1}(y | 1)}
$$

= $-\log Z_b(W)$,

where $Z_b(W)$ is the Bhattacharya parameter of the BIMS W.

Interpreting the result

 \blacktriangleright The rate of convergence ρ of the mutual information and channel dispersion to their limits

$$
\rho = \min_{x, x': x \neq x'} C(P_{Y|x}, P_{Y|x'})
$$

is independent of the input distribution (except via its support)!

 \triangleright For a binary-input memoryless symmetric (BIMS) channel W, the rate

$$
\rho = -\log \sum_{y \in \mathcal{Y}} \sqrt{P_{Y|0}(y | 0) P_{Y|1}(y | 1)}
$$

= $-\log Z_b(W)$,

where $Z_b(W)$ is the Bhattacharya parameter of the BIMS W.

Hence, our earlier speed of convergence for the BSC $^{(d)}$ is tight!
A finite blocklength corollary

A characterization of finite-blocklength rates achievable over $W^{(d)}$, thus follows.

▶ For a fixed $\epsilon \in (0,1)$ and blocklength $n \geq 1$, let

```
M^*(n, \epsilon) ← largest M s.t. \exists length-n code over W^{(d)}with max. error \epsilon.
```
A finite blocklength corollary

A characterization of finite-blocklength rates achievable over $W^{(d)}$, thus follows.

▶ For a fixed $\epsilon \in (0,1)$ and blocklength $n \geq 1$, let

$$
M^*(n, \epsilon) \leftarrow
$$
 largest *M* s.t. \exists length-*n* code over $W^{(d)}$

with max. error ϵ .

Theorem If W is "non-singular" (think unlike a BEC), we have $\log |\mathcal{X}| - \frac{\log \mathsf{M}^\star(n, \epsilon)}{}$ n $\leq e^{-d\rho+\Theta(\log d|\mathcal{X}|)}-\Phi^{-1}(\epsilon)\cdot\frac{e^{-d\rho/2+\Theta(\log d|\mathcal{X}|)}}{\sqrt{n}}+\Theta\left(\frac{\log n}{n}\right)$ n $\big).$

A finite blocklength corollary

A characterization of finite-blocklength rates achievable over $W^{(d)}$, thus follows.

▶ For a fixed $\epsilon \in (0,1)$ and blocklength $n \geq 1$, let

$$
M^*(n, \epsilon) \leftarrow
$$
 largest *M* s.t. \exists length-*n* code over $W^{(d)}$

with max. error ϵ .

Theorem If W is "non-singular" (think unlike a BEC), we have $\log |\mathcal{X}| - \frac{\log \mathsf{M}^\star(n, \epsilon)}{}$ n $\leq e^{-d\rho+\Theta(\log d|\mathcal{X}|)}-\Phi^{-1}(\epsilon)\cdot\frac{e^{-d\rho/2+\Theta(\log d|\mathcal{X}|)}}{\sqrt{n}}+\Theta\left(\frac{\log n}{n}\right)$ n $\big).$

▶ In particular, choosing $d = \rho^{-1} \log n$, we can achieve rates

$$
R_{n,\epsilon}\geq \log|\mathcal{X}|-O_{\epsilon}\left(\frac{\log n}{n}\right).
$$

Proof Sketch I: bin.-i/p, memoryless, symmetric BIMS channels

Background on BIMS channels

A BIMS channel obeys:

$$
Y=(-1)^X\cdot Z,
$$

for noise Z independent of X .

Examples:

Binary Erasure Channel (BEC)

Binary Symmetric Channel (BSC)

Consider $I^{(d)}$ for BIMS channels W with $P_X = \text{Ber}(1/2)$.

Consider $I^{(d)}$ for BIMS channels W with $P_X = \text{Ber}(1/2)$.

<u>Lower bound</u>: $H(X | Y^d) \geq e^{-d\rho + \Theta(\log d)}$

We have

$$
\mathsf{H}(X \mid Y^d) = \mathbb{E}\left[\log \frac{1}{P(X \mid Y^d)}\right].
$$

Consider $I^{(d)}$ for BIMS channels W with $P_X = \text{Ber}(1/2)$.

<u>Lower bound</u>: $H(X | Y^d) \geq e^{-d\rho + \Theta(\log d)}$

We have

$$
\mathsf{H}(X \mid Y^d) = \mathbb{E}\left[\log \frac{1}{P(X \mid Y^d)}\right].
$$

Note that in the binary hypothesis testing problem

the probability of correct decision is

$$
\mathbb{E}\left[P(X \mid Y^d)\right] = 1 - e^{-C\left(P_{Y^d|0}, P_{Y^d|1}\right) + \Theta(\log d)} = 1 - e^{-d\rho + \Theta(\log d)}.
$$

Consider $I^{(d)}$ for BIMS channels W with $P_X = \text{Ber}(1/2)$.

<u>Lower bound</u>: $H(X | Y^d) \geq e^{-d\rho + \Theta(\log d)}$

We have

$$
\mathsf{H}(X \mid Y^d) = \mathbb{E}\left[\log \frac{1}{P(X \mid Y^d)}\right].
$$

Note that in the binary hypothesis testing problem

the probability of correct decision is

$$
\mathbb{E}\left[P(X \mid Y^d)\right] = 1 - e^{-C\left(P_{Y^d|0}, P_{Y^d|1}\right) + \Theta(\log d)} = 1 - e^{-d\rho + \Theta(\log d)}.
$$

Applying Jensen's inequality $+$ a little algebra finishes the proof. \Box

Consider $I^{(d)}$ for BIMS channels W with $P_X = \text{Ber}(1/2)$.

Upper bound: $H(X | Y^d) \leq e^{-d\rho}$

A well-known lemma [e.g., Sasoglu (2012)]: for $P_X = \text{Unif}(\{0, 1\})$,

 $H(X | Y) \leq Z(W)$.

Consider $I^{(d)}$ for BIMS channels W with $P_X = \text{Ber}(1/2)$.

Upper bound: $H(X | Y^d) \leq e^{-d\rho}$

A well-known lemma [e.g., Sasoglu (2012)]: for $P_X = \text{Unif}(\{0, 1\})$,

 $H(X | Y) \leq Z(W)$.

Here, $W^{(d)}$ is also a BIMS channel, with

$$
H(X | Y^d) \le Z(W^{(d)}) = Z(W)^d = e^{-d\rho}. \quad \Box
$$

Consider $I^{(d)}$ for BIMS channels W with $P_X = \text{Ber}(1/2)$.

Upper bound: $H(X | Y^d) \leq e^{-d\rho}$

A well-known lemma [e.g., Sasoglu (2012)]: for $P_X = \text{Unif}(\{0, 1\})$,

 $H(X | Y) \leq Z(W)$.

Here, $W^{(d)}$ is also a BIMS channel, with

$$
H(X | Y^d) \le Z(W^{(d)}) = Z(W)^d = e^{-d\rho}. \quad \Box
$$

- ▶ [Hellman & Raviv (1970), Kanaya & Han (1995)] (or, our lower bound+[Levenshtein (2001)] and [Shannon, Gallager, Berlekamp (1967)]) allows us to complete a proof for general DMCs W.
- ▶ Our approach: a unified proof for $I^(d)$ and $V^(d)$ that allows for finite-blocklength results+multi-letter extensions.

Proof Sketch II: General DMCs

Sketch of proof strategy for general DMCs

Consider the mutual information $I^{(d)}$ for fixed P_X .

 \blacktriangleright We write

$$
H(X | Y^d) = \mathbb{E}\left[\log \frac{1}{P(X | Y^d)}\right]
$$

=
$$
\sum_{x \in \mathcal{X}} P_X(x) \mathbb{E}\left[\log \frac{1}{P(X | Y^d)} | X = x\right].
$$

Sketch of proof strategy for general DMCs

Consider the mutual information $I^{(d)}$ for fixed P_X .

 \blacktriangleright We write

$$
H(X | Y^d) = \mathbb{E}\left[\log \frac{1}{P(X | Y^d)}\right]
$$

=
$$
\sum_{x \in \mathcal{X}} P_X(x) \mathbb{E}\left[\log \frac{1}{P(X | Y^d)} | X = x\right].
$$

▶ Fix an $x \in \mathcal{X}$ and focus on the inner term:

$$
\mathbb{E}\left[\log \frac{1}{P(X \mid Y^d)}\middle| X = x\right] = \int_0^\infty \Pr\left[\log \frac{1}{P(X \mid Y^d)} \ge t \middle| X = x\right] dt.
$$

Sketch of proof strategy for general DMCs

Consider the mutual information $I^{(d)}$ for fixed P_X .

▶ We write

$$
H(X | Y^d) = \mathbb{E}\left[\log \frac{1}{P(X | Y^d)}\right]
$$

=
$$
\sum_{x \in \mathcal{X}} P_X(x) \mathbb{E}\left[\log \frac{1}{P(X | Y^d)} | X = x\right].
$$

▶ Fix an $x \in \mathcal{X}$ and focus on the inner term:

$$
\mathbb{E}\left[\log \frac{1}{P(X \mid Y^d)}\middle| X = x\right] = \int_0^\infty \Pr\left[\log \frac{1}{P(X \mid Y^d)} \ge t \middle| X = x\right] dt.
$$

Let $p_x(t) := \Pr \left[-\log P_{X \mid Y^d}(x \mid Y^d) \ge t | X = x \right].$

Bounding $p_x(t)$

Proposition

We have that

$$
\frac{p_x(t)}{(|\mathcal{X}|-1)} \leq \max_{\tilde{x}\neq x} \Pr\left[\frac{P(x)P(Y^d \mid x)}{P(\tilde{x})P(Y^d \mid \tilde{x})} \leq \frac{e^{-(t-\log(|\mathcal{X}|-1))}}{1-e^{-t}} \middle| X=x\right]
$$

and

$$
p_{x}(t) \geq \max_{\tilde{x} \neq x} \Pr\left[\frac{P(x)P(Y^d \mid x)}{P(\tilde{x})P(Y^d \mid \tilde{x})} \leq \frac{e^{-t}}{1 - e^{-t}} \middle| X = x\right].
$$

Bounding $p_x(t)$

Proposition We have that

$$
\frac{p_x(t)}{(|\mathcal{X}|-1)} \leq \max_{\tilde{x}\neq x} \Pr\left[\frac{P(x)P(Y^d \mid x)}{P(\tilde{x})P(Y^d \mid \tilde{x})} \leq \frac{e^{-(t-\log(|\mathcal{X}|-1))}}{1-e^{-t}} \middle| X=x\right]
$$

and

$$
p_{x}(t) \geq \max_{\tilde{x} \neq x} \Pr\left[\frac{P(x)P(Y^d \mid x)}{P(\tilde{x})P(Y^d \mid \tilde{x})} \leq \frac{e^{-t}}{1 - e^{-t}} \middle| X = x\right].
$$

Hence, let us concentrate on terms of the form

$$
\Gamma_{x,\tilde{x}}(z) := \Pr\left[\frac{P(x)P(Y^d \mid x)}{P(\tilde{x})P(Y^d \mid \tilde{x})} \leq \frac{ce^{-z}}{1 - e^{-z}} \middle| X = x\right],
$$

for $c > 0$.

Controlling the integral

Recall that we are primarily interested in

$$
p_{x}(t) \approx e^{\Theta(\log |\mathcal{X}|)} \cdot \max_{\tilde{x} \neq x} \Gamma_{x,\tilde{x}}(z),
$$

for suitable values of c, z , via $\int_0^\infty \rho_x(t) \mathrm{d}t$.

The following observation then holds:

Lemma We have that \int^{∞} 0 $\max_{\substack{\tilde{x} \neq x}} \Gamma_{x,\tilde{x}}(z) \mathrm{d}z = e^{\Theta(\log |\mathcal{X}|)} \cdot \max_{\substack{\tilde{x} \neq x}}$ \int^{∞} \int_{0}^{π} Γ_{x, $\tilde{x}(z)dz$.}

Controlling the integral

Recall that we are primarily interested in

$$
p_{x}(t) \approx e^{\Theta(\log |\mathcal{X}|)} \cdot \max_{\tilde{x} \neq x} \Gamma_{x,\tilde{x}}(z),
$$

for suitable values of c, z , via $\int_0^\infty \rho_x(t) \mathrm{d}t$.

The following observation then holds:

Lemma We have that \int^{∞} 0 $\max_{\substack{\tilde{x} \neq x}} \Gamma_{x,\tilde{x}}(z) \mathrm{d}z = e^{\Theta(\log |\mathcal{X}|)} \cdot \max_{\substack{\tilde{x} \neq x}}$ \int^{∞} \int_{0}^{π} Γ_{x, $\tilde{x}(z)dz$.}

Via Sanov's theorem+Laplace's method, it is possible to show that

$$
\int_0^\infty \Gamma_{x,\tilde x}(z)\mathrm{d} z=e^{\Theta(\log d|\mathcal{X}|)}\cdot e^{-d\cdot\min_{\tilde x\neq x}C(P_{Y|x},P_{Y|\tilde x})}.
$$

Putting everything together

Recall that we were ultimately interested in

$$
\mathbb{E}\left[\log \frac{1}{P(X \mid Y^d)} \middle| X = x\right] = \int_0^\infty \Pr\left[\log \frac{1}{P(x \mid Y^d)} \ge t \middle| X = x\right] dt
$$

$$
= \int_0^\infty p_x(t) dt
$$

$$
\approx e^{\Theta(\log |\mathcal{X}|)} \cdot \int_0^\infty \max_{\tilde{x} \ne x} \Gamma_{x, \tilde{x}}(z) dz
$$

$$
= e^{\Theta(\log d |\mathcal{X}|)} \cdot e^{-d \cdot \min_{\tilde{x} \ne x} C(P_{Y|x}, P_{Y|\tilde{x}})}.
$$

Putting everything together

Recall that we were ultimately interested in

$$
\mathbb{E}\left[\log \frac{1}{P(X \mid Y^d)}\middle|X=x\right] = \int_0^\infty \Pr\left[\log \frac{1}{P(x \mid Y^d)} \ge t\middle|X=x\right] dt
$$

$$
= \int_0^\infty p_x(t) dt
$$

$$
\approx e^{\Theta(\log |\mathcal{X}|)} \cdot \int_0^\infty \max_{\tilde{x} \ne x} \Gamma_{x, \tilde{x}}(z) dz
$$

$$
= e^{\Theta(\log d|\mathcal{X}|)} \cdot e^{-d \cdot \min_{\tilde{x} \ne x} C(P_{Y \mid x}, P_{Y \mid \tilde{x}})}.
$$

Hence, we have shown that

$$
H(X | Y^d) \approx e^{\Theta(\log d|\mathcal{X}|)} \cdot e^{-d \cdot \min_{\tilde{x} \neq x} C(P_{Y|x}, P_{Y|\tilde{x}})},
$$

with $\rho = \min_{\tilde{x} \neq x} C(P_{Y|x}, P_{Y|\tilde{x}}).$

Proof sktech for channel dispersion

Consider the channel dispersion $V^{(d)}$ for fixed P_X .

▶ We write

$$
V^{(d)} = \mathbb{E}\left[(\iota(X; Y^d) - I^{(d)})^2 \right]
$$

= V(X) + \left(\mathbb{E}\left[\left(\log P(X | Y^d) \right)^2 \right] - H(X | Y^d)^2 \right) + \theta_d,

where

$$
\theta_d = 2 \cdot \mathbb{E}\left[\left(\log P(X | Y^d) + H(X | Y^d) \right) \cdot \left(\log \frac{1}{P(X)} - H(X) \right) \right].
$$

Proof sktech for channel dispersion

Consider the channel dispersion $V^{(d)}$ for fixed P_X .

 \blacktriangleright We write

$$
V^{(d)} = \mathbb{E}\left[(i(X; Y^d) - I^{(d)})^2 \right]
$$

= V(X) + \left(\mathbb{E}\left[\left(\log P(X | Y^d) \right)^2 \right] - H(X | Y^d)^2 \right) + \theta_d,

where

$$
\theta_d = 2 \cdot \mathbb{E}\left[\left(\log P(X | Y^d) + \mathsf{H}(X | Y^d) \right) \cdot \left(\log \frac{1}{P(X)} - \mathsf{H}(X) \right) \right].
$$

▶ Using an integral-based approach (as earlier), we can obtain that

$$
\mathbb{E}\left[\left(\log P(X \mid Y^d)\right)^2\right] = e^{-d\rho + \Theta(\log d|\mathcal{X}|)}.
$$

▶ From the earlier proof, we know that $H(X | Y^d) = e^{-d\rho + \Theta(\log d|\mathcal{X}|)}$. ▶ The cross-term θ_d can be handled by "averaging" over $x \in \mathcal{X}$.

Multi-view multi-letter channels

Extensions to multi-letter channels

- ▶ Our main result can be extended to multi-letter channels, including synchronization channels with equal output length across views.
- \triangleright Consider such a multi-letter channel W_n of input length n, with

$$
W_n^{(d)}(\mathbf{y}_1,\ldots,\mathbf{y}_d\mid x^n)=\prod_{i=1}^d W_n(\mathbf{y}_i\mid x^n)
$$

 \blacktriangleright Multi-letter variants of the mutual information $I_n^{(d)}$ and dispersion $V_n^{(d)}$ can be defined similar to earlier.

Extensions to multi-letter channels

- ▶ Our main result can be extended to multi-letter channels, including synchronization channels with equal output length across views.
- \triangleright Consider such a multi-letter channel W_n of input length n, with

$$
W_n^{(d)}(\mathbf{y}_1,\ldots,\mathbf{y}_d\mid x^n)=\prod_{i=1}^d W_n(\mathbf{y}_i\mid x^n)
$$

 \blacktriangleright Multi-letter variants of the mutual information $I_n^{(d)}$ and dispersion $V_n^{(d)}$ can be defined similar to earlier.

Theorem

We have that

$$
I_n^{(d)} = H(X^n) - \exp(-d\rho_n + \Theta(n\log d|\mathcal{X}|)), \text{ and}
$$

$$
V_n^{(d)} - V(X^n) = \exp(-d\rho_n + \Theta(n\log d|\mathcal{X}|)),
$$

where

$$
\rho_n=\min_{u^n,\tilde{u}^n:u^n\neq\tilde{u}^n}C(P_{\mathbf{Y}|u^n},P_{\mathbf{Y}|\tilde{u}^n}).
$$

Computations for the deletion channel

Consider the deletion channel Del(δ) that, on input $u^n \in \{0,1\}^n$, deletes each symbol u_i independently w.p. $\delta \in (0,1)$.

 $01001011 \rightarrow 00011$

Theorem For Del(δ), where $\delta \in (0,1)$, we have that $\limsup \rho_n \leq -\log \delta.$ $n \rightarrow \infty$

Computations for the deletion channel

Consider the deletion channel Del(δ) that, on input $u^n \in \{0,1\}^n$, deletes each symbol u_i independently w.p. $\delta \in (0,1)$.

 $01001011 \rightarrow 00011$

```
Theorem
For Del(\delta), where \delta \in (0,1), we have that
                                  \limsup \rho_n \leq -\log \delta.n \rightarrow \infty
```
- \blacktriangleright The proof follows by obtaining upper bounds on ρ_n by choosing special sequences x^n , \tilde{x}^n .
- \blacktriangleright The rate of convergence ρ_n for Del(δ), for large enough *n*, is hence much slower than that of an *n*-letter DMC W_n , for which

$$
\rho_n(W_n)=n\cdot \rho(W).
$$

Non-Asymptotic Bounds on Capacity

Non-asymptotic bounds for the $BSC^{(d)}$

Consider the BSC^(d)(p). We introduce a closely related DMC Poi_d(p).

 $\mathsf{BSC}^{(d)}(p)$

 $Poi_d(p)$

$$
P_{R_1|0} = \text{Poi}(d(1-p)), \ P_{R_1|1} = \text{Poi}(dp)
$$

$$
P_{R_2|1} = \text{Poi}(d(1-p)), \ P_{R_2|0} = \text{Poi}(dp)
$$

Non-asymptotic bounds for the $BSC^{(d)}$

Consider the BSC^(d)(p). We introduce a closely related DMC Poi_d(p).

 $\mathsf{BSC}^{(d)}(p)$ $BSC(p)$ $x \in \{0, 1\}$ x x x y_1 y_2 y³ y^d (y_1, \ldots, y_d) BSC(p) BSC(p) $BSC(p)$ $Poi_d(p)$ Poi Poi $x \in \{0, 1\}$ x $x \t\t r_1$ $r₂$ (r_1, r_2) $P_{R_1|0} = \text{Poi}(d(1-p)), P_{R_1|1} = \text{Poi}(dp)$ $P_{R_2|1} = \text{Poi}(d(1-p)), P_{R_2|0} = \text{Poi}(dp)$ Theorem $C(Poi_d(p)) \leq C(Bin_d(p)) \leq C(Poi_d(p)) + e^{-d(1-Z(p))} - Z(p)^{2d}$ where $Z(p) = 2\sqrt{p(1-p)}$.

Plots and comparisons

Plots comparing $C(\text{Bin}_{d}(p))$ and $C(\text{Poi}_{d}(p))$, for varying d.

A corollary for BIMS channels

 \triangleright Any BIMS channel W with a finite output alphabet can be decomposed as

$$
W_{Y|X=x} = \sum_{i=1}^K \epsilon_i \cdot W_{Y|X=x}^{(i)},
$$

where $W_{Y\cup}^{(i)}$ $\frac{N^{(1)}}{Y|X=x}$ is the channel law of a BSC with crossover probability p_i , and $\epsilon_i > 0$, with $\sum_i \epsilon_i = 1$.

▶ Let P_s be the distribution on $\{1, \ldots, K\}$ with mass ϵ_i at point *i*. $C^{(d)}(W) = \mathbb{E}\left[C(J_1,\ldots,J_d)\right],$

where $J_i \stackrel{\text{i.i.d.}}{\sim} P_s$, $1 \leq i \leq K$.

A corollary for BIMS channels

 \triangleright Any BIMS channel W with a finite output alphabet can be decomposed as

$$
W_{Y|X=x} = \sum_{i=1}^K \epsilon_i \cdot W_{Y|X=x}^{(i)},
$$

where $W_{Y\cup}^{(i)}$ $\frac{N^{(1)}}{Y|X=x}$ is the channel law of a BSC with crossover probability p_i , and $\epsilon_i > 0$, with $\sum_i \epsilon_i = 1$.

▶ Let P_s be the distribution on $\{1, \ldots, K\}$ with mass ϵ_i at point *i*. $C^{(d)}(W) = \mathbb{E}\left[C(J_1,\ldots,J_d)\right],$

where $J_i \stackrel{\text{i.i.d.}}{\sim} P_s$, $1 \leq i \leq K$.

▶ Now, suppose that $0 < p_1 \leq p_2 \leq \ldots \leq p_K < 1/2$. Then,

Corollary $C(\text{Poi}_d(p_K)) \leq C^{(d)}(W)$ $\leq C({\sf Poi}_d(p_1))+\exp(-d(1-Z(p_1)))-Z(p_1)^{2d}.$ Towards Q2: Extending Levenshtein's results to the average case
The setting

Consider the following special setting:

 \blacktriangleright The views $\mathbf{y}_1, \ldots, \mathbf{y}_d$ are distinct and are drawn uniformly, without replacement, from a t -substitution error sphere around x , i.e.,

 ${\sf y}_i={\sf x}+{\sf e}_i,\,$ where $w_H({\sf e}_i)=t$ and ${\sf e}_1,\ldots,{\sf e}_d$ are distinct.

Some comments

 \triangleright This setting is a generalization of the classical problem in [Levenshtein (2001)], wherein the (distinct) errors e_1, \ldots, e_d were adversarially drawn from the Hamming sphere of radius t.

Some comments

 \triangleright This setting is a generalization of the classical problem in [Levenshtein (2001)], wherein the (distinct) errors e_1, \ldots, e_d were adversarially drawn from the Hamming sphere of radius t .

 \triangleright From [Levenshtein (2001)], it can be argued that

$$
\mathsf{Dec}(\mathbf{y}_1,\ldots,\mathbf{y}_d)=\mathbf{x},
$$

for all $\mathbf{x} \in \{0,1\}^n$, only if $d > N_{\text{Lev}} := 2{n-1 \choose t-1}$, for any decoder Dec.

Some comments

 \triangleright This setting is a generalization of the classical problem in [Levenshtein (2001)], wherein the (distinct) errors e_1, \ldots, e_d were adversarially drawn from the Hamming sphere of radius t .

 \triangleright From [Levenshtein (2001)], it can be argued that

$$
\mathsf{Dec}(\mathbf{y}_1,\ldots,\mathbf{y}_d)=\mathbf{x},
$$

for all $\mathbf{x} \in \{0,1\}^n$, only if $d > N_{\text{Lev}} := 2{n-1 \choose t-1}$, for any decoder Dec.

▶ Moreover, Levenshtein argued that the bit-wise majority decoder

$$
\mathsf{Dec}^{\mathsf{Maj}}(\mathbf{y}_1,\ldots,\mathbf{y}_d)=(\mathsf{Maj}(y_{1,1},\ldots,y_{d,1}),\ldots,\mathsf{Maj}(y_{1,n},\ldots,y_{d,n}))
$$

is "optimal", in that

$$
\mathsf{Dec}^{\mathsf{Maj}}(\mathbf{y}_1,\ldots,\mathbf{y}_d)=\mathbf{x},
$$

for all $\mathbf{x} \in \{0,1\}^n$, whenever $d > N_{\text{Lev}}$.

How does Dec^{Maj} perform in the average case?

Fix the bit-wise majority decoder Dec^{Maj}. Given views y_1, \ldots, y_d , construct the array

Let $m(n, t, d)$ denote the number of distinct arrays $M(\mathbf{y}_1, \ldots, \mathbf{y}_d)$ that lead to correct reconstruction of x via $\mathsf{Dec}^{\mathsf{Maj}}.$

A recurrence relation for estimating $m(n, t, d)$

From the structure of the Dec^{Maj} decoder, the following lemma holds:

Lemma We have that $m(n, t, d) \ge m(n-3, t, d) + m(n-3, t-1, d) \cdot a_d$ where $a_d = \sum$ $k_1+k_2+k_3=N$
 $k_1, k_2, k_3 \leq \lfloor \frac{d-1}{2} \rfloor$ $\binom{d}{k_1,k_2,k_3}$.

 \triangleright With the aid of suitable initial conditions

$$
m(n, t, d) = 0, \text{ if } d < 3 \text{ or } d > n - 3(t - 1),
$$

the above recurrence relation can be explicitly solved, giving a lower bound on $m(n, t, d)$.

Estimating the average $#$ of views for reconstruction

▶ Via the previous arguments, we can derive a lower bound on

$$
P_{\mathsf{c}}(n,t,d):=\frac{m(n,t,d)}{\binom{\binom{n}{t}}{d}}.
$$

- \triangleright This allows us to obtain an upper bound on $\mathbb{E}[\#]$ views for reconst. via a union-bound style argument.
- ▶ Moreover, we have the following lemma:

```
Lemma
When t = 1, we have
              \mathbb{E}[\# views for reconst.] = N_{\text{Lev}} = 3.
```
Future work

- \triangleright Bounds/exact computation of ρ_n for general synchronization channels and other channels with memory
- \blacktriangleright Relating Dec^{Maj} to the "optimal" decoder in terms of $\mathbb{E}[\#$ views for reconst.].

References

1. V. Arvind Rameshwar and Nir Weinberger, "Information rates over multi-view channels," under review at the IEEE Transactions on Information Theory; presented at the IEEE ISIT 2024.

2. Vivian Papadopoulou, V. Arvind Rameshwar, Antonia Wachter-Zeh, "How many noisy copies of a sequence are needed on average for exact reconstruction?," accepted to the ITW 2024.

Thank You!