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What is the talk about?
The decoder obtains d noisy views of an input sequence.

Transmitter

Channel
W

Channel
W

Channel
W

Channel
W

...

Decoder

...
...

x ∈ X n x

x

x

x

y1

y2

y3

yd

(y1, . . . , yd)

d views

Q1: What rates are achievable, with vanishing reconstruction error
probability?

Q2: How many views are required on average to exactly reconstruct a
sequence?
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Whence does this problem arise? - I

▶ Short molecules in a DNA pool are “amplified” by Polymerase Chain
Reaction (PCR) and sampled multiple times [Shomorony and Heckel

(2022)].
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......

▶ The capacity is determined by mutual information terms
corresponding to different # of views of the input sequence; see

[Lenz et al. (2019, 2020), Shomorony and Heckel (2022), Weinberger and
Merhav (2022)].
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Whence does this problem arise? - II

▶ Errors due to synchronization in packet-switched communications
and in reading magneto-optical media

▶ Each output “run” at the end of (noisy) duplications corresponds to
a multi-view channel [Mitzenmacher (2008), Cheraghchi and Ribeiro
(2019)]
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Whence does this problem arise? - III

▶ Experimentally accurate channel models for DNA nanopore
sequencers [McBain and Viterbo (IEEE-BITS 2023), McBain, Viterbo,
Saunderson (2024)]

Duplication
channel

S1, . . . ,Sm

τ -mers

PS|S−

K1, . . . ,Km ∈ Λ \ {0}

i.i.d.

Z1, . . . ,ZTm
DMC

W

Y1, . . . ,YTm

▶ The channel model is a noisy duplication channel (with a specific
input process).
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Whence does this problem arise? - IV

▶ More fundamentally, in the iterative decoding of LDPC codes
[Gallager (1962), Richardson and Urbanke (2001)]

▶ A single variable node receives multiple “views”/estimates of its
value, from different check nodes.
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Answering Q1 in the large view limit



A simpler setting: Multi-view DMCs



The setting, revisited

The decoder obtains d independent, noisy views of an input symbol.
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Since a multi-view DMC is also a DMC, it suffices for us to focus
on the transmission of a single symbol, for rate computations.
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Goal: Exact asymptotics of the mutual info. (+ capacity) and
dispersion of such a multi-view channel, for arbitrary PX .
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What is known about this setting?

▶ Hellman and Raviv (1970), Kanaya and Han (1995): Exact asymptotics of
information rates over DMCs with multiple views

▶ Levenshtein (2001): Characterization of # of views for exact
reconstruction over comb. error channels and for reconstruction with
decaying error prob. over multi-view DMCs

▶ Land et al. (2005), Land and Huber (2006): Bounds on the mutual
information rates over multi-view DMCs via information combining

▶ Mitzenmacher (2006): Calculation of the capacity of a multi-view binary
symmetric channel (BSC)

▶ Haeupler and Mitzenmacher (2014): Information rates over multi-view
deletion channels when Pr[deletion] → 0.

▶ Batu et al. (2004), Cheraghchi et al. (2020), Peres and Zhai (2017):
Trace reconstruction over the deletion channel
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Our contributions:

1. Unified treatment of info. rate and channel dispersion
⇓

Finite-blocklength achievable rates with fixed error probability
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Background



Some formalism

▶ Consider a DMC W with input alphabet X and output alphabet Y,
both finite. Assume that |X |, |Y| do not depend on d .

▶ The d-view DMC W (d) obeys the channel law

W (d)((y1, . . . , yd) | x) =
d∏

i=1

W (yi | x),

for (y1, . . . , yd) ∈ Yd and x ∈ X .

▶ Fix a d-independent input distribution PX . We are interested in:

I (d) = I (X ;Y d) = H(X )− H(X | Y d) [Mutual info.]

and

V (d) = E
[
(ι(X ;Y d)− I (d))2

]
, [Channel dispersion]

where

ι(X ;Y d) = log
P(Y d | X )

P(Y d)
. [Info. spectrum]
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Building intuition: Multi-view BSC(d)

Consider the d-view BSC(p), with binary input X ∈ {0, 1}:

Y = X + Z (mod 2),

where Z ∼ Ber(p).

Suppose that X ∼ Ber(1/2).
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▶ By the Chernoff bound,

Pr[X ̸= M] ≤ exp(−dZ(p)),

where Z(p) = 2
√

p(1− p).

Hence, for large d :

hb(Pr[X ̸= M]) ≤ −2Pr[X ̸= M] · log Pr[X ̸= M]

= 2dZ (p) · exp(−dZ (p)).
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▶ By the Chernoff bound,

Pr[X ̸= M] ≤ exp(−dZ(p)),

where Z(p) = 2
√

p(1− p).
This gives us

I (X ;Y d) ≥ log 2− 2dZ (p) · exp(−dZ (p)).

Exponentially fast convergence to H(X ) = log 2
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Our Results



Our main result

▶ Intuitively, as d becomes large, we expect I (d) ≈ H(X ) and

V (d) ≈ V(X )︸ ︷︷ ︸
i/p varentropy

= E
[
(logP(X ) + H(X ))2

]
.

▶ For distributions P,Q on X , define the Chernoff information

C(P,Q) = − min
λ∈[0,1]

log

(∑
x∈X

P(x)1−λQ(x)λ

)
.

Theorem
When X ,Y,PX do not depend on d ,

I (d) = H(X )− exp (−dρ+Θ(log d |X |)) , and∣∣∣V (d) − V(X )
∣∣∣ = exp (−dρ+Θ(log d |X |)) ,

where
ρ = min

x,x′: x ̸=x′
C(PY |x ,PY |x′).
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Interpreting the result

▶ The rate of convergence ρ of the mutual information and channel
dispersion to their limits

ρ = min
x,x′: x ̸=x′

C(PY |x ,PY |x′)

is independent of the input distribution (except via its support)!

▶ For a binary-input memoryless symmetric (BIMS) channel W , the
rate

ρ = − log
∑
y∈Y

√
PY |0(y | 0)PY |1(y | 1)

= − logZb(W ),

where Zb(W ) is the Bhattacharya parameter of the BIMS W .

Hence, our earlier speed of convergence for the BSC(d) is tight!
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A finite blocklength corollary

▶ A characterization of finite-blocklength rates achievable over W (d),
thus follows.

▶ For a fixed ϵ ∈ (0, 1) and blocklength n ≥ 1, let

M⋆(n, ϵ)← largest M s.t. ∃ length-n code over W (d)

with max. error ϵ.

Theorem
If W is “non-singular” (think unlike a BEC), we have

log |X | − logM⋆(n, ϵ)

n

≤ e−dρ+Θ(log d|X |) − Φ−1(ϵ) · e
−dρ/2+Θ(log d|X |)

√
n

+Θ

(
log n

n

)
.

▶ In particular, choosing d = ρ−1 log n, we can achieve rates

Rn,ϵ ≥ log |X | − Oϵ

(
log n
n

)
.
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Proof Sketch I: BIMS︸ ︷︷ ︸ channels
bin.-i/p, memoryless, symmetric



Background on BIMS channels

A BIMS channel obeys:
Y = (−1)X · Z ,

for noise Z independent of X .

Examples:

ϵ
ϵ

1− ϵ

1− ϵ

0

1

1

0

−1

Binary Erasure Channel (BEC)

p

p

1− p

1− p

0

1

1

−1

Binary Symmetric Channel (BSC)

14 / 32



Proof for BIMS channels with uniform inputs

Consider I (d) for BIMS channels W with PX = Ber(1/2).
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Lower bound: H(X | Y d) ≥ e−dρ+Θ(log d)

We have

H(X | Y d) = E
[
log

1

P(X | Y d)

]
.

Note that in the binary hypothesis testing problem

PX

0

1

PY d |0

PY d |1

(Y1, . . . ,Yd)

the probability of correct decision is

E
[
P(X | Y d)

]
= 1− e−C(PYd |0,PYd |1)+Θ(log d) = 1− e−dρ+Θ(log d).

Applying Jensen’s inequality + a little algebra finishes the proof.
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Proof for BIMS channels with uniform inputs

Consider I (d) for BIMS channels W with PX = Ber(1/2).

Upper bound: H(X | Y d) ≤ e−dρ

A well-known lemma [e.g., Sasoglu (2012)]: for PX = Unif({0, 1}),

H(X | Y ) ≤ Z (W ).

Here, W (d) is also a BIMS channel, with

H(X | Y d) ≤ Z (W (d)) = Z (W )d = e−dρ.

▶ [Hellman & Raviv (1970), Kanaya & Han (1995)] (or, our lower
bound+[Levenshtein (2001)] and [Shannon, Gallager, Berlekamp

(1967)]) allows us to complete a proof for general DMCs W .

▶ Our approach: a unified proof for I (d) and V (d) that allows for
finite-blocklength results+multi-letter extensions.
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▶ [Hellman & Raviv (1970), Kanaya & Han (1995)] (or, our lower
bound+[Levenshtein (2001)] and [Shannon, Gallager, Berlekamp

(1967)]) allows us to complete a proof for general DMCs W .

▶ Our approach: a unified proof for I (d) and V (d) that allows for
finite-blocklength results+multi-letter extensions.
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Proof Sketch II: General DMCs



Sketch of proof strategy for general DMCs

Consider the mutual information I (d) for fixed PX .

▶ We write

H(X | Y d) = E
[
log

1

P(X | Y d)

]
=
∑
x∈X

PX (x)E
[
log

1

P(X | Y d)

∣∣∣∣X = x

]
.

▶ Fix an x ∈ X and focus on the inner term:

E
[
log

1

P(X | Y d)

∣∣∣∣X = x

]
=

∫ ∞

0

Pr

[
log

1

P(x | Y d)
≥ t

∣∣∣∣X = x

]
dt.

Let px(t) := Pr
[
− logPX |Y d (x | Y d) ≥ t|X = x

]
.
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Bounding px(t)

Proposition
We have that

px(t)

(|X | − 1)
≤ max

x̃ ̸=x
Pr

[
P(x)P(Y d | x)
P(x̃)P(Y d | x̃)

≤ e−(t−log(|X |−1))

1− e−t

∣∣∣∣∣X = x

]

and

px(t) ≥ max
x̃ ̸=x

Pr

[
P(x)P(Y d | x)
P(x̃)P(Y d | x̃)

≤ e−t

1− e−t

∣∣∣∣∣X = x

]
.

Hence, let us concentrate on terms of the form

Γx,x̃(z) := Pr

[
P(x)P(Y d | x)
P(x̃)P(Y d | x̃)

≤ ce−z

1− e−z

∣∣∣∣∣X = x

]
,

for c > 0.
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Controlling the integral

Recall that we are primarily interested in

px(t) ≈ eΘ(log |X |) ·max
x̃ ̸=x

Γx,x̃(z),

for suitable values of c , z , via
∫∞
0

px(t)dt.

The following observation then holds:

Lemma
We have that∫ ∞

0

max
x̃ ̸=x

Γx,x̃(z)dz = eΘ(log |X |) ·max
x̃ ̸=x

∫ ∞

0

Γx,x̃(z)dz .

Via Sanov’s theorem+Laplace’s method, it is possible to show that∫ ∞

0

Γx,x̃(z)dz = eΘ(log d|X |) · e−d·minx̃ ̸=x C(PY |x ,PY |x̃ ).
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Putting everything together

Recall that we were ultimately interested in

E
[
log

1

P(X | Y d)

∣∣∣∣X = x

]
=

∫ ∞

0

Pr

[
log

1

P(x | Y d)
≥ t

∣∣∣∣X = x

]
dt

=

∫ ∞

0

px(t)dt

≈ eΘ(log |X |) ·
∫ ∞

0

max
x̃ ̸=x

Γx,x̃(z)dz

= eΘ(log d|X |) · e−d·minx̃ ̸=x C(PY |x ,PY |x̃ ).

Hence, we have shown that

H(X | Y d) ≈ eΘ(log d|X |) · e−d·minx̃ ̸=x C(PY |x ,PY |x̃ ),

with ρ = minx̃ ̸=x C(PY |x ,PY |x̃).
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Proof sktech for channel dispersion

Consider the channel dispersion V (d) for fixed PX .

▶ We write

V (d) = E
[
(ι(X ;Y d)− I (d))2

]
= V(X ) +

(
E
[(
logP(X | Y d)

)2]− H(X | Y d)2
)
+ θd ,

where

θd = 2 · E
[
(logP(X |Y d) + H(X |Y d)) ·

(
log

1

P(X )
− H(X )

)]
.

▶ Using an integral-based approach (as earlier), we can obtain that

E
[(
logP(X | Y d)

)2]
= e−dρ+Θ(log d|X |).

▶ From the earlier proof, we know that H(X | Y d) = e−dρ+Θ(log d|X |).

▶ The cross-term θd can be handled by “averaging” over x ∈ X .
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Multi-view multi-letter channels



Extensions to multi-letter channels
▶ Our main result can be extended to multi-letter channels, including

synchronization channels with equal output length across views.

▶ Consider such a multi-letter channel Wn of input length n, with

W (d)
n (y 1, . . . , yd | xn) =

d∏
i=1

Wn(y i | xn)

▶ Multi-letter variants of the mutual information I
(d)
n and dispersion

V
(d)
n can be defined similar to earlier.

Theorem
We have that

I (d)n = H(X n)− exp (−dρn +Θ(n log d |X |)) , and∣∣∣V (d)
n − V(X n)

∣∣∣ = exp (−dρn +Θ(n log d |X |)) ,

where
ρn = min

un,ũn:un ̸=ũn
C(PY |un ,PY |ũn).
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Computations for the deletion channel

Consider the deletion channel Del(δ) that, on input un ∈ {0, 1}n, deletes
each symbol ui independently w.p. δ ∈ (0, 1).

0 1 0 0 1 0 1 1 −→ 0 0 0 1 1

Theorem
For Del(δ), where δ ∈ (0, 1), we have that

lim sup
n→∞

ρn ≤ − log δ.

▶ The proof follows by obtaining upper bounds on ρn by choosing
special sequences xn, x̃n.

▶ The rate of convergence ρn for Del(δ), for large enough n, is hence
much slower than that of an n-letter DMC Wn, for which

ρn(Wn) = n · ρ(W ).

22 / 32



Computations for the deletion channel

Consider the deletion channel Del(δ) that, on input un ∈ {0, 1}n, deletes
each symbol ui independently w.p. δ ∈ (0, 1).

0 1 0 0 1 0 1 1 −→ 0 0 0 1 1

Theorem
For Del(δ), where δ ∈ (0, 1), we have that

lim sup
n→∞

ρn ≤ − log δ.

▶ The proof follows by obtaining upper bounds on ρn by choosing
special sequences xn, x̃n.

▶ The rate of convergence ρn for Del(δ), for large enough n, is hence
much slower than that of an n-letter DMC Wn, for which

ρn(Wn) = n · ρ(W ).

22 / 32



Non-Asymptotic Bounds on Capacity



Non-asymptotic bounds for the BSC(d)

Consider the BSC(d)(p). We introduce a closely related DMC Poid(p).

BSC(d)(p)

BSC(p)

...
...

...

x ∈ {0, 1} x

x

x

x

y1

y2

y3

yd

(y1, . . . , yd)

BSC(p)

BSC(p)

BSC(p)

Poid(p)

Poi

Poi

x ∈ {0, 1}

x

x r1

r2

(r1, r2)

PR1|0 = Poi(d(1− p)), PR1|1 = Poi(dp)

PR2|1 = Poi(d(1− p)), PR2|0 = Poi(dp)

Theorem

C(Poid(p)) ≤ C(Bind(p)) ≤ C(Poid(p)) + e−d(1−Z(p)) − Z(p)2d ,

where Z(p) = 2
√

p(1− p).
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Plots and comparisons

Plots comparing C(Bind(p)) and C(Poid(p)), for varying d .
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A corollary for BIMS channels
▶ Any BIMS channel W with a finite output alphabet can be

decomposed as

WY |X=x =
K∑
i=1

ϵi ·W (i)
Y |X=x ,

where W
(i)
Y |X=x is the channel law of a BSC with crossover

probability pi , and ϵi > 0, with
∑

i ϵi = 1.

▶ Let Ps be the distribution on {1, . . . ,K} with mass ϵi at point i .

C (d)(W ) = E [C (J1, . . . , Jd)] ,

where Ji
i.i.d.∼ Ps , 1 ≤ i ≤ K .

▶ Now, suppose that 0 < p1 ≤ p2 ≤ . . . ≤ pK < 1/2. Then,

Corollary

C (Poid(pK )) ≤ C (d)(W )

≤ C (Poid(p1)) + exp(−d(1− Z (p1)))− Z (p1)
2d .
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Towards Q2: Extending Levenshtein’s results to the
average case



The setting

Consider the following special setting:

Transmitter

Channel

E
(1)
t

Channel

E
(2)
t

Channel

E
(3)
t

Channel

E
(d)
t

...

Decoder

...
...

x ∈ {0, 1}n x

x

x

x

y1

y2

y3

yd

(y1, . . . , yd)

d distinct views

▶ The views y1, . . . , yd are distinct and are drawn uniformly, without
replacement, from a t-substitution error sphere around x, i.e.,

yi = x+ ei , where wH(ei ) = t and e1, . . . , ed are distinct.
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Some comments

▶ This setting is a generalization of the classical problem in
[Levenshtein (2001)], wherein the (distinct) errors e1, . . . , ed were
adversarially drawn from the Hamming sphere of radius t.

▶ From [Levenshtein (2001)], it can be argued that

Dec(y1, . . . , yd) = x,

for all x ∈ {0, 1}n, only if d > NLev := 2
(
n−1
t−1

)
, for any decoder Dec.

▶ Moreover, Levenshtein argued that the bit-wise majority decoder

DecMaj(y1, . . . , yd) = (Maj(y1,1, . . . , yd,1), . . . ,Maj(y1,n, . . . , yd,n))

is “optimal”, in that

DecMaj(y1, . . . , yd) = x,

for all x ∈ {0, 1}n, whenever d > NLev.
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How does DecMaj perform in the average case?

Fix the bit-wise majority decoder DecMaj. Given views y1, . . . , yd ,
construct the array

M(y1, . . . , yd) =

y1

y2

y3

...

yd

y1,1

y2,1

yd,1

y1,n

yd,n

y1,2

Let m(n, t, d) denote the number of distinct arrays M(y1, . . . , yd) that
lead to correct reconstruction of x via DecMaj.
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A recurrence relation for estimating m(n, t, d)

From the structure of the DecMaj decoder, the following lemma holds:

Lemma
We have that

m(n, t, d) ≥ m(n − 3, t, d) +m(n − 3, t − 1, d) · ad ,

where ad =
∑

k1+k2+k3=N
k1,k2,k3≤⌊ d−1

2 ⌋

(
d

k1,k2,k3

)
.

▶ With the aid of suitable initial conditions

m(n, t, d) = 0, if d < 3 or d > n − 3(t − 1),

the above recurrence relation can be explicitly solved, giving a lower
bound on m(n, t, d).
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Estimating the average # of views for reconstruction

▶ Via the previous arguments, we can derive a lower bound on

Pc(n, t, d) :=
m(n, t, d)((nt)

d

) .

▶ This allows us to obtain an upper bound on E[# views for reconst.]
via a union-bound style argument.

▶ Moreover, we have the following lemma:

Lemma
When t = 1, we have

E[# views for reconst.] = N Lev = 3.
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Future work

▶ Bounds/exact computation of ρn for general synchronization
channels and other channels with memory

▶ Relating DecMaj to the “optimal” decoder in terms of
E[# views for reconst.].
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Thank You!


