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In this note, we consider classes of problems in sequence reconstruction that are motivated by
immunogenomics. The branch of personalized immunogenomics seeks to derive the germline genes
(or genes in the immunoglobin locus) of an individual from (several) samples of randomly selected
immunoglobin genes (also called antibody repertoire). The sequences in the antibody repertoire,
which can be seen as “traces,” in the language of the computer science literature, have undergone
“errors” in the form of somatic hypermutations (SHMs) or clonal selection, in order to modify the
affinity of the antibodies to specific antigens. Hence, the task of obtaining the individual germline
genes can be seen as an instance of a sequence reconstruction problem, given erroneous traces [1].
We refer the reader to the rich literature on classical sequence reconstruction problems, beginning
with the works of Levenshtein [2, 3], and progressing to the more recent results on “trace recon-
struction” over the deletion channel [4, 5, 6, 7, 8], and the references therein. Notably, this write-up
considers channel models, inspired by problems in immunogenomics, which are quite different
from the channels introducing “memoryless” errors, such as in the previous references.

Our chief interest will be in deriving asymptotic bounds on the number of traces (also called
“trace complexity”) required for reconstructing a (fixed or random) germline gene, with at most a
fixed probability of error. Our analysis will be entirely based on channel models for this sequence
reconstruction problem, which were introduced in [1, Sec. III]. While the work [1] set down the
channel laws for the models introduced, it left open the question of analyzing bounds on the trace
complexity for reliable reconstruction. Indeed, as we shall see, manipulations/reformulations of the
channel laws directly give rise to simple algorithms, which in turn provide upper bounds on trace
complexity, and lower bounds, via a standard information-theoretic argument. The main contribu-
tions of this write-up are hence the somewhat tedious computations required for arriving at these
bounds on the trace complexity.

1. CHANNEL MODELS AND PRELIMINARIES

In this section, we recapitulate the channel models presented in [1, Sec. III]. We focus exclusively
on channel models for the task of reconstructing the D gene in the immunoglobin locus; more
complicated models for reconstructing the V, D, and J genes in the immunoglobin locus, based on
concatenations of outputs of channel models for the D gene can also be found in [1, Sec. III].

Let n be the length of the D gene, which is treated as a sequence x ∈ {0, 1, 2, . . . , q − 1}n, for
some fixed size q > 1 of the alphabet X := {0, 1, 2, . . . , q − 1}. We are interested in the following
channel models:

(1) TrimSuffixAndExtend (or channel W1): An integer R ∼ Unif([0 : n]) is sampled and the
last R symbols of x are replaced with symbols that are drawn i.i.d. uniformly from X .

(2) TrimAndExtend (or channel W2): A pair of non-negative integers (R1, R2) is drawn uni-
formly from all such pairs whose sum is at most n. The first R1 symbols and the last R2

symbols of x are replaced with symbols that are drawn i.i.d. uniformly from X .
(3) SuffixExtendt(TrimSuffix) (or channel W3): An integer R ∼ Unif([0 : n]) is sampled and

the last R symbols of x are trimmed, giving rise to the trimmed sequence x′. Next, for a
fixed integer t ≥ 1, an integer E ∼ Unif([0 : t]) is sampled and E symbols that are drawn
i.i.d. uniformly from X are appended at the end of x′.
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We believe that similar computations as those made for channels W1–W3 can also be carried out for
channel models that allow for “mutations” or symbol flips, following corruptions by the channels
above. As an additional piece of notation, given a channel W , we define

dn(W ) := min
u̸=u′∈Xn

dTV
(
W (·|u),W (·|u′)

)
to be the smallest total variational distance between channel transition probabilities corresponding
to distinct channel input sequences. We now define a sequence reconstruction algorithm over a
channel W .

Definition 1 (Sequence reconstruction algorithm). A sequence reconstruction algorithm A takes as
input traces y1, . . . ,yN ∈ X ⋆, for some N ≥ 1, each obtained independently via a channel W ,
and returns as output a sequence (gene) x̂ ∈ X n.

It is clear that a sequence reconstruction algorithm is useful only if it returns the correct input
sequence, with high probability. We now recapitulate the definitions of the average-case error
probabilities of a sequence reconstruction algorithm and the average-case trace complexity. Recall
the definition of the maximum a-posteriori probability (MAP) decoder MAP.

Definition 2 (Average-case error probability and trace complexity). The average-case error prob-
ability of a sequence reconstruction algorithm A over the channel W , given N traces, is

P
(N)
e,A :=

1

qn
·
∑
x∈Xn

P
(N)
e,A (x),

where

P
(N)
e,A (x) :=

∑
(y1,...,yN )∈X ⋆

N∏
i=1

W (yi|x) · 1{A(y1, . . . ,yN ) ̸= x}.

The average-case trace complexity, for a fixed error probability δ ∈ (0, 1), is the smallest number
of traces required on average by the optimal MAP decoder:

Tδ(n) = min{N : P
(N)
e,MAP ≤ δ}.

Definition 3 (Trace complexity given an input sequence). The trace complexity given an input
sequence x ∈ X n, for a fixed error probability δ ∈ (0, 1), is given by

Tδ(n;x) := min{N : P
(N)
e,MAP(x) ≤ δ}.

The following simple lemma is then immediate from the definitions above.

Lemma 1. For the channels W1 through W4, we have that Tδ(n) = Tδ(n;x), for all δ ∈ (0, 1),
n ≥ 1, and x ∈ X n.

Proof. The proof directly follows from the fact that P (N)
e,MAP(x), for each of these channels and for

any x ∈ X n, is independent of x, which in turn holds since the channel laws are dependent only on
the errors introduced, and not on the input sequence. □

In what follows, we hence restrict attention to the setting where the all-zeros sequence is trans-
mitted over channels W1 through W4, and obtain bounds on the quantity Tδ(n), via bounds on
Tδ(n;0). The following lemma, which holds via standard arguments analogous to the discussion
after [5, Thm. 1.2], will be useful to us.

Lemma 2. For any channel W and for all δ ∈ (0, 1), we have that the trace complexity Tδ(n) =

Ω
(

1
dn(W )

)
.

We next introduce a simple algorithm, FINDMODE (see Algorithm 1), that returns the trace
occurring most often. As we shall see, all our reconstruction algorithms are either FINDMODE
itself, for a certain values of N , or are simple variants thereof.
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Algorithm 1 Sequence reconstruction algorithm
1: procedure FINDMODE(y1, . . . ,yN )
2: Return the sequence occurring most often in (y1, . . . ,yN ).

2. TRIMSUFFIXANDEXTEND

In this section, we obtain bounds on the trace complexity, for error probability δ ∈ (0, 1), over
channel W1. Given sequences u,y ∈ X n, we define ℓ(u,y) to be the length of the longest common
prefix of u and y. First, we present a simple lemma, which is a restatement of the channel law of
W1 in [1, Sec. III-A].

Lemma 3. For any u,y ∈ X n, we have

W1(y|u) =
1

(n+ 1)qn
·

(
qℓ(u,y)+1 − 1

q − 1

)
.

The characterization above directly gives rise to a simple sequence reconstruction algorithm, via
FINDMODE.

Theorem 4. For any δ ∈ (0, 1), we have Tδ(n) ≤ 2(n+ 1)2 ·
(
ln
(
1
δ

)
+ n ln q

)
.

Proof. Recall from Lemma 1 that it suffices to consider the trace complexity Tδ(n;0). Now, via
Lemma 3, we have that

W1(y|0) =
1

(n+ 1)qn
·

(
qℓ(0,y)+1 − 1

q − 1

)
,

and in particular, W1(0|0) = 1
(n+1)qn ·

(
qn+1−1
q−1

)
. Now, given N traces y1, . . . ,yN generated

by passing 0 through W1, let Nu be the random variable denoting the number of occurrences of
u ∈ X n among the traces. It then follows via an application of Hoeffding’s inequality [9] (see also
[10, Thm. 2.2.6]) that for any ϵ > 0,

Pr

[
N0 ≥ N

(
1

(n+ 1)qn
·
(
qn+1 − 1

q − 1

)
− ϵ

)]
≥ 1− e−2Nϵ2 . (1)

Furthermore, via a union bound, and using the fact that W1(y|0) is increasing in ℓ(0,y), we have
for any ϵ > 0 that

Pr

[
Ny ≤ N

(
1

(n+ 1)qn
·
(
qn − 1

q − 1

)
+ ϵ

)
, for all y ̸= 0

]
≥ 1− (qn − 1) · e−2Nϵ2 . (2)

Hence, via a union bound, we see that by picking ϵ < 1
2(n+1) ,

Pr [N0 ≥ Ny, for all y ̸= 0] ≥ 1− e
− N

2(n+1)2
+n ln q

. (3)

Thus, by picking N ≥ 2(n+ 1)2 ·
(
ln
(
1
δ

)
+ n ln q

)
, we obtain that

Pr [FINDMODE(y1, . . . ,yN ) ̸= 0 | 0] ≥ 1− δ,

yielding the statement of the lemma. □

We next obtain an asymptotic lower bound on Tδ(n).

Theorem 5. For any δ ∈ (0, 1), we have Tδ(n) = Ω(n).

Proof. Via Lemma 2, it suffices to characterize dn(W1). By symmetry, we have

dn(W1) = min
u̸=0

dTV (W1(·|0),W1(·|u)) .



4 V. ARVIND RAMESHWAR

Now, for any u ̸= 0, we have via Lemma 3 that

dTV (W1(·|0),W1(·|u)) =
q−n+1

2(n+ 1)(q − 1)
·
∑
y∈Xn

∣∣∣qℓ(0,y) − qℓ(u,y)
∣∣∣ .

Intuitively, each term in the summand above is small if ℓ(0,y) is close to ℓ(u,y). In particular,
by picking u = 01, we obtain after some algebraic manipulations that dn(W1) ≤ 1

n+1 , thereby
yielding the statement of the theorem. □

3. TRIMANDEXTEND

We now consider the channel W2. Our main contributions are the explicit computations of
the channel law and bounds on the quantity dn(W2), which naturally lead to bounds on the trace
complexity over W2.

For u,y ∈ X n, let L = L(u,y) denote the location of the first disagreement, counting from the
left, between u and y, and let R = R(u,y) denote the location of the first disagreement, counting
from the right (the arguments in L(u,y) and R(u,y) are dropped when the sequences are clear
from the context).

Lemma 6. For any u ∈ X n, we have that

W2(u|u) =
2

(n+ 1)(n+ 2)(1− q−1)
·
(
1− q−n−1

1− q−1
− (n+ 1)q−n−1

)
.

Proof. In what follows, let the iterables r1, r2 ≥ 0, with r1 + r2 ≤ n denote the realizations of the
random variables R1, R2, respectively, in the definition of the channel W2. We then have

W2(u|u) =
2

(n+ 1)(n+ 2)
·

n∑
r1=0

n−r1∑
r2=0

q−r1−r2

=
2

(n+ 1)(n+ 2)
·

n∑
r1=0

q−r1 ·

(
1− q−(n−r1+1)

1− q−1

)

=
2

(n+ 1)(n+ 2)(1− q−1)
·
(
1− q−n−1

1− q−1
− (n+ 1)q−n−1

)
,

thereby giving rise to the statement of the lemma. □

More generally, the following lemma holds.

Lemma 7. For any u,y ∈ X n, we have

W2(y|u) =
2

(n+ 1)(n+ 2)(1− q−1)
·
[
q−n+R−1−L ·

(
1− qL−R

1− q−1

)
+ q−R ·

(
1− q−n+R−1

1− q−1

)
− (n−R+ L)q−n−1 + q−n+L−1 ·

(
1− q−L

1− q−1

)]
.

Proof. Let the iterables r1, r2 ≥ 0, with r1+r2 ≤ n denote the realizations of the random variables
R1, R2, respectively, in the definition of the channel W2. We split the evaluation of W2(y|u) into
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the following three summations:

W2(y|u) =
∑

r2≥n−R+1,
r1≥L

PR1,R2(r1, r2) ·W2(y|u, r1, r2)

︸ ︷︷ ︸
:=Γ1

+
∑
r1≥R

PR1,R2(r1, r2) ·W2(y|u, r1, r2)︸ ︷︷ ︸
:=Γ2

+
∑

r2≥n−L+1

PR1,R2(r1, r2) ·W2(y|u, r1, r2)︸ ︷︷ ︸
:=Γ3

.

First, consider the term Γ1. We have

Γ1 =
2

(n+ 1)(n+ 2)
·

n∑
r1=L

n−r1∑
r2=n−R+1

q−r1−r2

=
2

(n+ 1)(n+ 2)
·
R−1∑
r1=L

q−r1 · q−n+R−1

(
1− qr1−R

1− q−1

)

=
2q−n+R−1

(n+ 1)(n+ 2)(1− q−1)
·

R−1∑
r1=L

q−r1 −
R−1∑
r1=L

q−R


=

2q−n+R−1

(n+ 1)(n+ 2)(1− q−1)
·
[
q−L ·

(
1− qL−R

1− q−1

)
− (R− L)q−R

]
.

Next, we take up the term Γ2. We have

Γ2 =
2

(n+ 1)(n+ 2)
·

n∑
r1=R

n−r1∑
r2=0

q−r1−r2

=
2

(n+ 1)(n+ 2)
·

n∑
r1=R

q−r1 ·
(
1− q−n+r1−1

1− q−1

)

=
2

(n+ 1)(n+ 2)(1− q−1)
·
[
q−R ·

(
1− q−n+R−1

1− q−1

)
− (n−R+ 1)q−n−1

]
.

Finally, consider the term Γ3. We have

Γ3 =
2

(n+ 1)(n+ 2)
·

n∑
r2=n−L+1

n−r2∑
r1=0

q−r1−r2

=
2

(n+ 1)(n+ 2)
·

n∑
r2=n−L+1

q−r2 ·
(
1− q−n+r2−1

1− q−1

)

=
2

(n+ 1)(n+ 2)(1− q−1)
·
[
q−n+L−1 ·

(
1− q−L

1− q−1

)
− Lq−n−1

]
.

Putting everything together yields the statement of the lemma. □

Observe that Lemma 7 gives rise to Lemma 6 as a corollary, by plugging in L = R = 0. The
characterization above again directly gives rise to a simple sequence reconstruction algorithm, via
FINDMODE.

Theorem 8. For any δ ∈ (0, 1), we have Tδ(n) = O(n4).
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Proof. Recall from Lemma 1 that it suffices to consider the trace complexity Tδ(n;0). Now, via
Lemma 7, we have that for any y ̸= 0,

W2(y|0) =
2

(n+ 1)(n+ 2)(1− q−1)
·
[
q−n+R−1−L ·

(
1− qL−R

1− q−1

)
+ q−R ·

(
1− q−n+R−1

1− q−1

)
− (n−R+ L)q−n−1 + q−n+L−1 ·

(
1− q−L

1− q−1

)]
,

where L and R are, respectively, the locations of the first 1, counting from the left, and the first 1,
counting from the right, in y. In particular, W2(0|0) = 2

(n+1)(n+2)(1−q−1)
·
(
1−q−n−1

1−q−1 − (n+ 1)q−n−1
)

,
via Lemma 6. Observe that since 1 ≤ L ≤ n and 1 ≤ R ≤ n, we have that

W2(0|0)−W2(y|0) ≥
2

(n+ 1)(n+ 2)(1− q−1)2
·
(
2q−1 + q−2 + (1− 4q)q−n−2

)
≥ 2

(n+ 1)(n+ 2)(1− q−1)2
·
(
2q−1 + q−2 + (1− 4q)q−3

)
=: cq(n),

(4)

for all n ≥ 1. It can easily be checked that the right-hand side of (4) is strictly positive, for q ≥ 2.
Now, given N traces y1, . . . ,yN generated by passing 0 through W1, let Nu be the random

variable denoting the number of occurrences of u ∈ X n among the traces. Via arguments entirely
similar to that in Theorem 4, we have for any ϵ > 0 that

Pr [N0 ≥ N (W2(0|0)− ϵ)] ≥ 1− e−2Nϵ2 . (5)

Furthermore, via a union bound, we have for any ϵ > 0 that

Pr [Ny ≤ N (W2(y|0) + ϵ) , for all y ̸= 0] ≥ 1− (qn − 1) · e−2Nϵ2 . (6)

Hence, via a union bound, we see from (4) that by picking ϵ < cq(n)/2,

Pr [N0 ≥ Ny, for all y ̸= 0] ≥ 1− e−2N(cq(n))2+n ln q. (7)

Thus, by picking N ≥ ln( 1
δ )+n ln q

2(cq(n))2
, we obtain that

Pr [FINDMODE(y1, . . . ,yN ) ̸= 0 | 0] ≥ 1− δ,

which yields the statement of the lemma, since 1
(cq(n))2

= O(n4). □

In a manner entirely analogous to Theorem 5, we shall obtain an asymptotic lower bound on
Tδ(n), over W2.

Theorem 9. For any δ ∈ (0, 1), we have that Tδ(n) = Ω(n2), if n is odd.

Proof. We proceed similar to the proof of Theorem 5. By symmetry once again, we have

dn(W2) = min
u̸=0

dTV (W2(·|0),W2(·|u)) .

For ease of reading, we set Lu := L(u,y), when the sequence y is clear from the context. Now,
for any fixed u ∈ X n, we have from Lemma 7 that

(n+ 1)(n+ 2)(1− q−1) · dTV (W2(·|0),W2(·|u)) =
∑
y∈Xn

|β1(y) + β2(y) + β3(y) + β4(y)|

(8)

≤
∑
y∈Xn

4∑
i=1

|βi(y)| ,
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where

β1(y) := q−n−1 ·
(
qR0−L0 ·

(
1− qL0−R0

1− q−1

)
− qRu−Lu ·

(
1− qLu−Ru

1− q−1

))
=

q−n−1

1− q−1
·
(
qR0−L0 − qRu−Lu

)
;

β2(y) := q−R0 ·
(
1− q−n+R0−1

1− q−1

)
− q−Ru ·

(
1− q−n+Ru−1

1− q−1

)
;

β3(y) := q−n−1 · (Lu −Ru +R0 − L0) ; and

β4(y) := q−n−1 ·
(
qL0 ·

(
1− q−L0

1− q−1

)
− qLu ·

(
1− q−Lu

1− q−1

))
.

Intuitively, the expression on the right in (8) is small, if L0 and Lu (resp. R0 and Ru) are close
for many sequences y. Following this intuition, we pick u = 0(n−1)/210(n−1)/2. Let h(y) :=∑4

i=1 |βi(y)|.
Via the definition of u, we see that if y is such that L0 < n+1

2 and R0 < n+1
2 , then h(y) = 0.

Furthermore, we claim that

∑
y:L0≤n+1

2
, R0≥n+1

2

h(y) =
∑

y:L0≥n+1
2

, R0≤n+1
2

h(y), (9)

and likewise, ∑
y:L0<

n+1
2

, R0<
n+1
2

h(y) =
∑

y:L0>
n+1
2

, R0>
n+1
2

h(y) = 0. (10)

To see why (9) and (10) hold, we observe that every summand on the left-hand side of (9) (resp.
(10)) can be mapped uniquely to a summand on the right-hand side of (9) (resp. (10)), via the
mapping (L0, R0) 7→ (n+ 1−R0, n+ 1− L0), and vice-versa. Hence, it follows that

∆ := (n+ 1)(n+ 2)(1− q−1) · dTV (W2(·|0),W2(·|u)) = 2 ·
∑

y:L0≤n+1
2

, R0≥n+1
2

h(y). (11)

We hence restrict attention to the expression
∑

y:L0≤n+1
2

, R0≥n+1
2

h(y) above. In this setting, we

have Ru ≥ n+1
2 . Since for any fixed (ℓ0, r0) pair, there are (q − 1)2qn−ℓ0−r0 < qn−ℓ0−r0+2

sequences y with L0 = ℓ0 and R0 = r0, it follows from (11) that

∆ = 2qn+2 ·

n+1
2∑

L0=0

n+1−L0∑
R0=

n+1
2

q−L0−R0 · h(L0, R0, Lu, Ru), (12)

where, with some abuse of notation, we have set h(y) = h(L0, R0, Lu, Ru), if y corresponds to the
pair (L0, R0), under the input sequence 0, and (Lu, Ru), under the input sequence u, respectively.
We further write β1 through β4 as functions of the tuple (L0, R0, Lu, Ru), similarly.



8 V. ARVIND RAMESHWAR

Consider first the summation

∆4 := 2qn+2 ·

n+1
2∑

L0=0

n+1−L0∑
R0=

n+1
2

q−L0−R0 · |β4(y)|

= 2qn+2 ·

n−1
2∑

L0=0

n+1−L0∑
R0=

n+1
2

q−L0−R0 · |β4(y)|+ 2qn+2 ·
n+1−L0∑
R0=

n+1
2

(
q−L0−R0 · |β4(y)|

) ∣∣∣∣
L0=

n+1
2

= 2q·|β4(y)|
∣∣∣∣
L0=

n+1
2

= O(1), (13)

where the penultimate equality holds since we have that L0 = Lu, when L0 ≤ n−1
2 . Moreover, we

have

∆3 := 2qn+2 ·

n+1
2∑

L0=0

n+1−L0∑
R0=

n+1
2

q−L0−R0 · |β3(L0, R0, Lu, Ru)| = O(1). (14)

Now, note that

∆1 := 2qn+2 ·

n+1
2∑

L0=0

n+1−L0∑
R0=

n+1
2

q−L0−R0 · |β1|

≤ 2qn+2 ·

n−1
2∑

L0=0

n+1−L0∑
R0=

n+3
2

q−L0−R0 · |β1|+ 2qn+2 ·

n−1
2∑

L0=0

n+3
2∑

R0=
n+1
2

q−L0−R0 · |β1|+O(1)

≤ 2q ·

n−1
2∑

L0=0

n+1−L0∑
R0=

n+3
2

q−2L0−R0+
n+1
2 + 2q ·

n−1
2∑

L0=0

n+3
2∑

R0=
n+1
2

q−2L0−R0+
n+3
2 +O(1) = O(1).

(15)

Furthermore, we have

∆2

:= 2qn+2 ·

n+1
2∑

L0=0

n+1−L0∑
R0=

n+1
2

q−L0−R0 · |β2|

≤ 2qn+2 ·

n−1
2∑

L0=0

q−L0

n+1−L0∑
R0=

n+3
2

q−R0 ·

(
q−R0 ·

(
1− q−n+R0−1

1− q−1

)
+ q−

n+1
2 ·

(
1− q−

n+1
2

1− q−1

))

+ 2qn+2 ·

n−1
2∑

L0=0

q−L0

n+3
2∑

R0=
n+1
2

q−R0 ·

(
q−R0 ·

(
1− q−n+R0−1

1− q−1

)
+ q−

n+3
2 ·

(
1− q−

n+3
2

1− q−1

))
+O(1)

≤ 2q

(1− q−1)2
·

n−1
2∑

L0=0

q−L0 +
4q

(1− q−1)
·

n−1
2∑

L0=0

q−L0 +
4q

(1− q−1)
·

n−1
2∑

L0=0

q−L0 +O(1) = O(1).

(16)
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Algorithm 2 Sequence reconstruction algorithm
1: procedure TRIMANDFINDMODE(y1, . . . ,yN )
2: Let y1, . . . ,yR be the collection of traces of length at least n.
3: Trim the sequences yi to retain their length-n prefixes ŷi, i ∈ [R].
4: Return the sequence occurring most often in (ŷ1, . . . , ŷR).

The inequalities that led to (15) and (16) were obtained via repeated applications of the triangle
inequality and simple approximations. Putting together (11)–(16), we see that

dTV (W2(·|0),W2(·|u)) ≤
1

(n+ 1)(n+ 2)(1− q−1)

4∑
i=1

∆i = O

(
1

(n+ 1)(n+ 2)

)
,

thereby yielding the statement of the theorem. □

4. SUFFIXEXTENDt(TRIMSUFFIX)

We now turn to the channel W3. As before, we first present a simple sequence reconstruction
algorithm for this channel that succeeds with high probability, thus giving rise to an upper bound on
the trace complexity. We first recapitulate the channel law for this channel given in [1, Sec. III-B].
Now, let ℓ(u,y) denote the longest common prefix between strings u ∈ X n,y ∈ X ⋆. Note that
this notation is an extension of that employed in Section 2. The following lemma then holds:

Lemma 10 ([1], Eq. (3)). For any u ∈ X n,y ∈ Xm, for some 0 ≤ m ≤ n+ t, we have

W3(y|u) =
1

(n+ 1)(t+ 1)
·

ℓ(u,y)∑
k=(m−t)+

1

qm−k
.

We now present a simple sequence reconstruction algorithm, TRIMANDFINDMODE, over W3,
Algorithm 2. The following lemma will be useful to us; let ℓ = ℓ(y) := ℓ(0,y), when the sequence
y is clear from the context. Further, let λ := t+ ℓ− n+ 1.

Lemma 11. We have that for any y ∈ X n,

Pr
[
Ŷ1 = ŷ1|0

]
=

{
q−ℓ

(n+1)(t+1)(q−1)2
·
[
qλ+1 − (λ+ 1)q + λ

]
, if ℓ ≥ n− t,

0, otherwise.

Proof. Suppose that Pr
[
Ŷ1 = ŷ1|0

]
> 0, when n−ℓ(ŷ1) ≥ t+1. Then, the length of y1 that was

trimmed to obtain ŷ1 is at most n− 1, leading to a contradiction. In the case when ℓ(ŷ1) ≥ n− t,
we have

Pr
[
Ŷ1 = ŷ1|0

]
=

t∑
r=n−ℓ

PR(r) · Pr[E ≥ r] · qr−n

=
1

(n+ 1)(t+ 1)
·

t∑
r=n−ℓ

(t− r + 1) · qr−n

=
q−n+t+1

(n+ 1)(t+ 1)
·
t+ℓ−n+1∑

r=1

r · q−r

=
q−ℓ

(n+ 1)(t+ 1)
·
(
qt+ℓ−n+2 − (t+ ℓ− n+ 2)q + (t+ ℓ− n+ 1)

(q − 1)2

)
=

q−ℓ

(n+ 1)(t+ 1)(q − 1)2
·
[
qλ+1 − (λ+ 1)q + λ

]
,
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thereby giving us the statement of the lemma. □

We next present a lemma that shows argues that Pr
[
Ŷ1 = 0|0

]
is strictly larger than Pr

[
Ŷ1 = ŷ1|0

]
,

for all ŷ1 ̸= 0. To this end, we note from Lemma 11 that it suffices to show that Pr
[
Ŷ1 = ŷ1|0

]
is increasing in ℓ.

Lemma 12. For any ŷ1 ∈ X n such that ŷ1 ̸= 0, we have Pr
[
Ŷ1 = 0|0

]
> Pr

[
Ŷ1 = ŷ1|0

]
.

Furthermore,

Pr
[
Ŷ1 = 0|0

]
−max

ŷ1 ̸=0
Pr
[
Ŷ1 = ŷ1|0

]
=

q−n

(n+ 1)
.

Proof. For the first statement of the lemma, following Lemma 11, it suffices to show that

g(ℓ) := q−ℓ · (t+ ℓ− n+ 1− (t+ ℓ− n+ 2)q)− q−ℓ+1 · (t+ ℓ− n− (t+ ℓ− n+ 1)q)

satisfies g(ℓ) > 0, for all n− t ≤ ℓ ≤ n. Indeed, observe that

g(ℓ) = q−ℓ · (t+ ℓ− n+ 1) · (q − 1)2 > 0,

for all q > 1, n − t ≤ ℓ ≤ n. The second statement of the lemma holds by observing that
maxŷ1 ̸=0 Pr

[
Ŷ1 = ŷ1|0

]
is attained by any ŷ1 with ℓ(ŷ1) = n− 1. □

Let cq(n) := q−n

(n+1) . Via arguments entirely analogous to the proofs of Theorems 4 and 8, we
obtain the following theorem:

Theorem 13. For any δ ∈ (0, 1), we have that Pr [TRIMANDFINDMODE(y1, . . . ,yN ) ̸= 0 | 0] ≥
1− δ, when N ≥ ln( 1

δ )+n ln q

2(cq(n))2
. In particular, we have that Tδ(n) = O(n3).

Next, we state an asymptotic lower bound on Tδ(n), in a manner similar to Theorems 5 and 9.

Theorem 14. For any δ ∈ (0, 1), we have that Tδ(n) = Ω(n).

Proof. Via Lemma 2, it suffices to characterize dn(W3). Once again, by symmetry

dn(W3) = min
u̸=0

dTV (W3(·|0),W3(·|u)) .

Now, for any u ̸= 0, we have via Lemma 10 that

dTV (W3(·|0),W3(·|u)) =
1

2(n+ 1)(t+ 1)
·
∑
y∈Xn

∣∣∣∣∣∣
ℓ0∑

k=(|y|−t)+

qk−|y| −
ℓu∑

k=(|y|−t)+

qk−|y|

∣∣∣∣∣∣ ,
where ℓ0 and ℓu, respectively are shorthand for ℓ(0,y) and ℓ(u,y), when y is clear from the con-
text. Intuitively, each term in the summand above is small if ℓ(0,y) is close to ℓ(u,y). In particu-
lar, by picking u = 01, we obtain after some algebraic manipulations that dn(W3) ≤ 1

2(n+1)(t+1) ,

thereby yielding the statement of the theorem. □
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