An Analysis of Recursive Projection-Aggregation
Decoding of Reed-Muller Codes

Arvind Rameshwar
IIT Madras

CodelT: CNI Workshop on Codes, Sequences and Information Theory
Happy 70", Prof. Vijay Kumar!

1/16

What is this talk about?

Consider the family of binary Reed-Muller (RM) codes.

Decode RM (m, 3)
y

Decode RM (m—1,2)

Projection

YB B e Y/ | // \ - Decode

Nona Recursive - L RM(m — 2,1) with
iterations decoding . . Fast Hadamard

Y/B, Uy oo Y/Baos | \\ / Transform
\\ %ﬁgmion) !?/m,.,]

Source: [Ye-Abbe (2020)]

We show that the Recursive Projection-Aggregation (RPA) decoder of
[Ye-Abbe (2020)] achieves vanishing error probabilities over the BSC for
RM codes of low rate.

2/16

Brief background: RM codes

» Fix m > 1 and consider the points (xi, ..., Xn) of the Boolean
hypercube {0,1}™.

» Define xs := [[;cs xi, where S C [m].
» Pick a multilinear polynomial f = % ¢ s xs, where § C P([m]), with
= < .
deg(f) = max|S| < r
» Evaluate f at all points in {0,1}" in the (lexicographic) order:
000...00 -+ 000...01 —+000...10 = ... — 111...11,

and call the resultant vector Eval(f). Here, blocklength n = 2.

» The code RM(m, r) consists of all Eval(f), where f is as above.

> dim(RM(m, r)) = #{xs : deg(xs) = [S| < r} = 3"0, (T) = (£))-

3/16

Problem setup

Consider the transmission of an RM codeword across a binary symmetric

channel (BSC).

¢ € RM(m, 1)

Lad
RM codeword

y €{0,1}"

RPA
Decoder

c
e

N—oco

Q: How large can the rate be for Pr[c #¢] —— 07

TL;DL: The parameter r can grow = logarithmically in m

4/16

Placing things in context

>

[

Aimin
2

[Reed (1954)] provided a decoder capable of correcting <
adversarial errors.

For first-order (r = 1) RM codes, [Green (1966)] and
[Be'ery-Snyders (1986)] described efficient ML decoding, via the
Fast Hadamard Transform (FHT).

For second-order RM codes, see [Sidel'nikov-Pershakov (1992)] and
[Sakkour (2005)] for decoders that work well at moderate
blocklengths.

Provably good error guarantees over the BSC for constant r
obtained via [Dumer (2004, 2006), Dumer-Shabunov (2006)]

More recently, data-driven decoding methods have been explored
[Jamali et al. (2023)]

5/16

Placing things in context

Aimin
2

> [Reed (1954)] provided a decoder capable of correcting <
adversarial errors.

» For first-order (r = 1) RM codes, [Green (1966)] and
[Be'ery-Snyders (1986)] described efficient ML decoding, via the
Fast Hadamard Transform (FHT).

> For second-order RM codes, see [Sidel nikov-Pershakov (1992)] and
[Sakkour (2005)] for decoders that work well at moderate
blocklengths.

» Provably good error guarantees over the BSC for constant r
obtained via [Dumer (2004, 2006), Dumer-Shabunov (2006)]

» More recently, data-driven decoding methods have been explored

[Jamali et al. (2023)]

Simulations [Ye-Abbe (2020), Li et al. (2021), Fathollahi et al. (2021)]
demonstrate good performance of the RPA decoder for “low” r values.

5/16

What is RPA decoding?

Via the Plotkin decomposition, Recursive(ly) Project using all
one-dimensional subspaces

RM(5, 3)
RM(4,2) RM(4,3)
RM(3,1) RM(3,2) RM(3,2) RM(3, 3)

6/16

What is RPA decoding?

Via the Plotkin decomposition, Recursive(ly) Project using all
one-dimensional subspaces

RM(5, 3)

RM(3,1) RM(3,2) RM(3,2) RM(3,3)

/ \ Y\
RM(2,1) RM(2,2)

RM(2,1) RM(2,2)

ML decode at red codes

6/16

What is RPA decoding?

Via the Plotkin decomposition, Recursive(ly) Project using all
one-dimensional subspaces

RM(5, 3)

ML decode at red codes

6/16

What is RPA decoding?

Via the Plotkin decomposition, Recursive(ly) Project using all
one-dimensional subspaces and Aggregate decoded estimates

RM(5,3)
RM(4,2) RM(4,3)
RM(3,1) RM(3,2) RM(3,2) RM(3, 3)

6/16

What is RPA decoding?

Via the Plotkin decomposition, Recursive(ly) Project using all
one-dimensional subspaces and Aggregate decoded estimates

6/16

What is RPA decoding?

Via the Plotkin decomposition, Recursive(ly) Project using all
one-dimensional subspaces and Aggregate decoded estimates

RM(4, 2) M(4,3)
RM(3,1) M(3,2) RM(3,2) RM ,3)
/ \ AN
RM(2,1) RM(2,2)
M(2,1) RM(2,2)

Repeat procedure over several iterations

6/16

A closer view of PA

Projection: For a received Y, pick each one-dim. subspace B; in turn
and construct

Yg = (Y(T): Te{0,1}"/B;),

where Y/ (T) := Dyep, Yeab-

N.272 7 N-272 1

RM(m 1 +2.2) ooooooooooooooooooooog
RM(m 7 1.3 0000000 000000

Level r — 1

7/16

A closer view of PA

Aggregation: At a “parent node,” for each x € {0,1}™, compute
N—1

o(x) = Y 1{Y)m,(Ix + Bi]) # Vs, (Ix + B},

i=1
where \A//B,. < decoded estimate of a “child node". Flip Yy, if
$(x) > M52,

N-2% 1 N-2-2_1

RM(n—r+2.2) HOOOO0000000000O000000R Lo -2
RM(m 7 1.3 0000000 ooooooﬁée

7/16

Our main result(s)

Let p:=1-(1—(1-2p)% ") and n(p) == % - (1 — 4B(1 — p)).

Theorem
For any 0 < € < n(p), we have that for r > 2, using one-dimensional

subspaces for projection,

PRPA(RM(m, r)) < 32N" - exp (=271 Ne?) .

err

8/16

Our main result(s)

Letpi= 1 (1~ (1-2p)" ") and (p) := & - (1~ 4p(1 — P)).

Theorem
For any 0 < e < n(p), we have that for r > 2, using one-dimensional
subspaces for projection,

PRPA(RM(m, r)) < 32N" - exp (=27 "1Né?).

err

Corollary

For any 0 < ¢ < —1°82

Iog(ﬁ

y we have that for all r < log(cm),

lim PRPA(RM(m, r)) = 0.
m—o0

8/16

Our main result(s)

Let pi= 5 (1~ (1-2p)* ") and 5(p) := § - (1 - 4p(1 — P)).
Further, let p¥) := 1. (l —(1- 2p)2j).

Theorem
For any 0 < € < n(p), we have that for r > 2, using k-dimensional

subspaces for projection, where k|(r — 1),

RPA 3. 1 plr=k=1) —r—1—kp 2
P (RM(m, r)) §64N 'nk,km - exp (—ln (p(rkl) -2 r Ne .

err

8/16

Our main result(s)

Let 5= 4 (1— (1~ 2p)*) and n(p) == 1 - (1 — 4B(1 - 7).
Further, let p¥) := 1. (1 —(1- 2p)2]).
Theorem

For any 0 < € < n(p), we have that for r > 2, using k-dimensional
subspaces for projection, where k|(r — 1),

1

r—1 1— p(r—k—l) o
PEPA(RM(m, r)) < 64N> - n, 7 - exp (—In (p(rkl) 27k NE?)

err

However, the rate guarantee r < log m does not change . ..

8/16

Key steps/ideas in analysis

1. Via symmetry, it suffices to focus on ¢ = 0, since

PRPARM(m, r)) = PRPA (RM(m, r)).

err err, 0

9/16

Key steps/ideas in analysis

1. Via symmetry, it suffices to focus on ¢ = 0, since

PRPARM(m, r)) = PRPA (RM(m, r)).

err err, 0

2. Restrict attention to the event where one iteration of RPA is
sufficient for convergence:

RPA RPA

RPA RPA

Y 0 0

9/16

Key steps/ideas in analysis

1. Via symmetry, it suffices to focus on ¢ = 0, since

P (RM(m, r)) = Pgr’y(RM(m, r)).

err

2. Restrict attention to the event where one iteration of RPA is
sufficient for convergence:

RPA_ » RPA . RPA RPA
Y 0 0 .. 0.

FHT Analyze error probability for the “base” case (r = 1).

Agg Analyze error probability upon aggregation, conditioned on all child
nodes being decoded correctly.

9/16

Key steps/ideas in analysis

1. Via symmetry, it suffices to focus on ¢ = 0, since

P (RM(m, r)) = Pgr’y(RM(m, r)).

err

2. Restrict attention to the event where one iteration of RPA is
sufficient for convergence:

RPA_ » RPA . RPA RPA
Y 0 0 .. 0.

FHT Analyze error probability for the “base” case (r = 1).
Agg Analyze error probability upon aggregation, conditioned on all child

nodes being decoded correctly.

We hence embark on the analysis of FHT and Agg for order-2 RM codes.

9/16

Elaborating on Step FHT

Via the simple map x — (—1)*, for x € {0,1}, we can view binary strings
as +1-vectors.

» Forse {0,1}™ let xs:= ((—1)*%: x € {0,1}™). Then,

{c € RM(m, 1)} v {£ys: s € {0,1}™1.

10/16

Elaborating on Step FHT

Via the simple map x — (—1)*, for x € {0,1}, we can view binary strings
as +1-vectors.

» Forse {0,1}™ let xs:= ((—1)*%: x € {0,1}™). Then,
{c e RM(m, 1)} — {£xs: s € {0,1}"}.
» Then, it can be argued that

FHT(Y /g,) = argmax(Y /g, £xs)-
£xs

10/16

Elaborating on Step FHT

Via the simple map x — (—1)*, for x € {0,1}, we can view binary strings
as +1-vectors.

» Forse {0,1}™ let xs:= ((—1)*%: x € {0,1}™). Then,
{c e RM(m, 1)} — {£xs: s € {0,1}"}.
» Then, it can be argued that

FHT(Y /g,) = argmax(Y /g, £xs)-
£xs

» Via simple concentration of the inner products, this yields

Theorem
For all € < n(p),

PIFHT(Y 5,) # 0] < 8N - e~ .

See also [Burnashev-Dumer, T-IT 2006]

10/16

Elaborating on Step Agg
Conditioned on all child nodes being decoded correctly,

» aggregation reduces to checking if
N—1

P(x) = Z (Y ® Yain;)

i=1

is < or > M1,

11/16

Elaborating on Step Agg
Conditioned on all child nodes being decoded correctly,

» aggregation reduces to checking if
N—1

P(x) = Z (Y ® Yain;)

i=1
is < or > %
> since ¢(x) concentrates around its mean,
_ 1 — 1
Flip(x) =1 {qﬁ(x) > 2} ~1 {QSOO(X) > 2} =Y,

for large N, where ¢__(x) := p(1 — Yy) + (1 — p) Ys.

11/16

Elaborating on Step Agg
Conditioned on all child nodes being decoded correctly,

» aggregation reduces to checking if
N—1

P(x) = Z (Y ® Yain;)

i=1
is < or > %
> since ¢(x) concentrates around its mean,
_ 1 — 1
Flip(x) =1 {qﬁ(x) > 2} ~ 1 {QSOO(X) > 2} =Y,
for large N, where ¢__(x) := p(1 — Yy) + (1 — p) Ys.
» Thus, we get

Theorem
For all e < n(p),

Ne2

PriFlip=Y]>1-32N3.¢ 5.

11/16

Elaborating on Step Agg
Conditioned on all child nodes being decoded correctly,

» aggregation reduces to checking if
N—1

o(x) =D (Yx® Yun))

i—1
is < or > N1,

> since ¢(x) concentrates around its mean,
_ 1 — 1
Flip(x) =1 {¢(x) > 2} ~ 1 {(boo(x) > 2} =Yy,

for large N, where ¢__(x) := p(1 — Yy) + (1 — p) Yx.
» Thus, we get

Theorem
For all € < n(p),

Ne?

PriY=0] =Pr[Flip=Y]>1-32N°.e 5.

RPA convergence in one iteration!

11/16

Putting everything together

N2t p e —

RM(m = r +2.2) OOOOOOOOOOOOOOOOOOOOO% Level 12
RM(m = r+1,1) 0000000 000000

Level r — 1

Projection-aggregation tree

Via recursive arguments on the projection-aggregation tree, we get

Theorem
For any 0 < e < n(p), we have that for r > 2, using one-dimensional
subspaces for projection,

PRPA(RM(m, r)) < 32N" - exp (—27""1Né?).

12/16

Projections using higher dimensional subspaces

» If projections are carried out using k-dimensional subspaces, for
k > 1, then

RM(n-r11) OOOO00000000000000000000 7
the branching factor is

_0i
#k-dim. subspaces of{0,1}™ = {] H Sk = M
» Then, conditioned on all children being decoded correctly, the
concentration of ¢(x) must be handled via more sophisticated
concentration inequalities.

13/16

RPA, but using higher-dim. subspaces

Projection: For a received Y, pick each k-dim. subspace B; in turn and
construct
Y /B, = (Y/B,.(T) Te {0,1}’"/15%,-) ,

where Y5 (T) := @beIB,- Yieb-

r—

1
k

RM(m-r+1.1) QOO0O0000000O00000000O00000

14/16

RPA, but using higher-dim. subspaces

Aggregation: At a “parent node,” for each x € {0,1}™, compute

N, m

6(x) = > 1{Y)s,(Ix + Bi]) # Vya,(Ix + B}

i=1

Flip Yy, if ¢(x) > %

r—1

RM(m-r+1.1) QOO0O0000000O000000OO0O00000 &

14/16

Elaborating on Step Agg

» Conditioned on all child nodes being decoded correctly,
aggregation reduces to checking if

Nik,m

o(x) =Y _ D Yaan

i=1 beB;

is < or > &m,

15/16

Elaborating on Step Agg

» Conditioned on all child nodes being decoded correctly,
aggregation reduces to checking if

Nik,m

o(x) =Y _ D Yaan

i=1 beB;

Nie.m
5 -

is < or >

> Concentration of ¢(x) about its mean, however, needs a more
sophisticated result:

Theorem (Raginsky-Sason (2018), Thm. 3.4.4)

Let Xi,...,X, be i.i.d. Ber(q) random variables. Then, for every Lipschitz
function f : {0,1}" — R with Lipschitz constant cf, we have for all o > 0,

PrIF(X") — E[f(X")] > a] < exp (— In (1 . ") o) .

nc? - (1—2q)

15/16

Elaborating on Step Agg

» Conditioned on all child nodes being decoded correctly,
aggregation reduces to checking if
Nic,m
3(x) = > P Yien,
i=1 beB;

is < or > Km

» An explicit computation of the Lipschitz constant c¢s associated with
¢, seen as a function of (Yygb), then results in

Fin() =1 {300 > 3 } ~ 1 {500 > 1 | = %

for large N, for a suitably defined ¢__(x).

Theorem
For all € smaller than a suitable function of p,

PriFlip=Y]>1—0pm,

for an explicitly computable 5, ——=>5 0.

15/16

Elaborating on Step Agg

» Conditioned on all child nodes being decoded correctly,
aggregation reduces to checking if
Ni,m
0(x) =2 D Yiow:
i=1 beB;

is < or > m

» An explicit computation of the Lipschitz constant ¢f associated with
@, seen as a function of (Yygp), then results in

_ 1 — 1
Flip(x) = 1 {gb(x) > 2} ~ 1 {(boo(x) > 2} =Yy,
for large N, for a suitably defined ¢__(x).

Theorem
For all € smaller than a suitable function of p,

Pr [V:O} =Pr[Flip=Y]>1—=6n,

for an explicitly computable §,, ——5 0.

15/16

Further extensions

Ongoing work with

1. Can we extend similar analysis
to general BMS channels?

2. Can RPA decoding be made
more efficient by using a subset
of subspaces for projection? Dorsa Fathollahi (PhD, Stanford U.),

Harshithanjani Athi (PhD, UT Austin),
Lalitha Vadlamani (I11T-H)

16/16

Thank You!

