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What is this talk about?

Consider the family of binary Reed-Muller (RM) codes.

Source: [Ye-Abbe (2020)]

We show that the Recursive Projection-Aggregation (RPA) decoder of
[Ye-Abbe (2020)] achieves vanishing error probabilities over the BSC for

RM codes of low rate.
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Brief background: RM codes

▶ Fix m ≥ 1 and consider the points (x1, . . . , xm) of the Boolean
hypercube {0, 1}m.

▶ Define xS :=
∏

i∈S xi , where S ⊆ [m].

▶ Pick a multilinear polynomial f =
∑

S∈S xS , where S ⊆ P([m]), with

deg(f ) = max
S∈S
|S | ≤ r .

▶ Evaluate f at all points in {0, 1}m in the (lexicographic) order:

000 . . . 00→ 000 . . . 01→ 000 . . . 10→ . . .→ 111 . . . 11,

and call the resultant vector Eval(f ). Here, blocklength n = 2m.

▶ The code RM(m, r) consists of all Eval(f ), where f is as above.

▶ dim(RM(m, r)) = #{xS : deg(xS) = |S | ≤ r} =
∑r

i=0

(
m
i

)
=:

(
m
≤r

)
.
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Problem setup

Consider the transmission of an RM codeword across a binary symmetric
channel (BSC).

Q: How large can the rate be for Pr[ĉ ̸= c]
N→∞−−−−→ 0 ?

TL;DL: The parameter r can grow ≈ logarithmically in m
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Placing things in context

▶ [Reed (1954)] provided a decoder capable of correcting < dmin

2
adversarial errors.

▶ For first-order (r = 1) RM codes, [Green (1966)] and
[Be’ery-Snyders (1986)] described efficient ML decoding, via the
Fast Hadamard Transform (FHT).

▶ For second-order RM codes, see [Sidel’nikov-Pershakov (1992)] and
[Sakkour (2005)] for decoders that work well at moderate
blocklengths.

▶ Provably good error guarantees over the BSC for constant r
obtained via [Dumer (2004, 2006), Dumer-Shabunov (2006)]

▶ More recently, data-driven decoding methods have been explored
[Jamali et al. (2023)]

Simulations [Ye-Abbe (2020), Li et al. (2021), Fathollahi et al. (2021)]
demonstrate good performance of the RPA decoder for “low” r values.
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What is RPA decoding?

Via the Plotkin decomposition, Recursive(ly) Project using all
one-dimensional subspaces

RM(5, 3)

RM(4, 2) RM(4, 3)

RM(3, 1) RM(3, 2) RM(3, 2) RM(3, 3)

RM(2, 1) RM(2, 2)

RM(2, 1) RM(2, 2)

ML decode at red codes
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ML decode at red codes
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A closer view of PA

Projection: For a received Y, pick each one-dim. subspace Bi in turn
and construct

Y/Bi
:=

(
Y/Bi

(T ) : T ∈ {0, 1}m/Bi

)
,

where Y/Bi
(T ) :=

⊕
b∈Bi

Yx⊕b.

RM(m, r)

. . .

RM(m − 1, r − 1)

Level 0

Level 1

RM(m − 2, r − 2)

. . .

Level 2

N − 1

N
2
− 1 N

2
− 1

...
...

...
...

RM(m − r + 2, 2) Level r − 2

N
4
− 1 N

4
− 1

RM(m − r + 1, 1) Level r − 1

N · 2r−2 − 1 N · 2r−2 − 1
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A closer view of PA

Aggregation: At a “parent node,” for each x ∈ {0, 1}m, compute

ϕ(x) =
N−1∑
i=1

1{Y/Bi
([x+ Bi ]) ̸= Ŷ/Bi

([x+ Bi ])},

where Ŷ/Bi
← decoded estimate of a “child node”. Flip Yx, if

ϕ(x) > N−1
2 .

RM(m, r)

. . .

RM(m − 1, r − 1)

Level 0

Level 1

RM(m − 2, r − 2)

. . .

Level 2

N − 1

N
2
− 1 N

2
− 1

...
...

...
...

RM(m − r + 2, 2) Level r − 2

N
4
− 1 N

4
− 1

RM(m − r + 1, 1) Level r − 1

N · 2r−2 − 1 N · 2r−2 − 1
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Our main result(s)

Let p := 1
2 · (1− (1− 2p)2

r−2

) and η(p) := 1
2 · (1− 4p(1− p)).

Theorem
For any 0 < ϵ < η(p), we have that for r ≥ 2, using one-dimensional
subspaces for projection,

PRPA
err (RM(m, r)) ≤ 32N r+1 · exp

(
−2−r−1Nϵ2

)
.
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Corollary
For any 0 < c < log 2

log( 1
1−2p )

, we have that for all r ≤ log(cm),

lim
m→∞

PRPA
err (RM(m, r)) = 0.
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Our main result(s)
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r−2

) and η(p) := 1
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subspaces for projection, where k |(r − 1),
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err (RM(m, r)) ≤ 64N3 · n

r−1
k

k,m · exp
(
− ln

(
1− p(r−k−1)

p(r−k−1)

)
· 2−r−1−kNϵ2

)
.

However, the rate guarantee r ⪅ logm does not change . . .
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Key steps/ideas in analysis

1. Via symmetry, it suffices to focus on c = 0, since

PRPA
err (RM(m, r)) = PRPA

err, 0(RM(m, r)).

2. Restrict attention to the event where one iteration of RPA is
sufficient for convergence:

Y
RPA−−→ 0

RPA−−→ 0
RPA−−→ . . .

RPA−−→ 0.

FHT Analyze error probability for the “base” case (r = 1).

Agg Analyze error probability upon aggregation, conditioned on all child
nodes being decoded correctly.

We hence embark on the analysis of FHT and Agg for order-2 RM codes.
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Elaborating on Step FHT
Via the simple map x 7→ (−1)x , for x ∈ {0, 1}, we can view binary strings
as ±1-vectors.

▶ For s ∈ {0, 1}m, let χs := ((−1)x·s : x ∈ {0, 1}m). Then,

{c ∈ RM(m, 1)} 7→ {±χs : s ∈ {0, 1}m}.

▶ Then, it can be argued that

FHT(Y/Bi
) ≡ argmax

±χs

⟨Y/Bi
,±χs⟩.

▶ Via simple concentration of the inner products, this yields

Theorem
For all ϵ < η(p),

Pr[FHT(Y/Bi
) ̸= 0] ≤ 8N · e− Nϵ2

8 .

See also [Burnashev-Dumer, T-IT 2006]
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Elaborating on Step Agg
Conditioned on all child nodes being decoded correctly,

▶ aggregation reduces to checking if

ϕ(x) =
N−1∑
i=1

(Yx ⊕ Yx+bi )

is < or > N−1
2 .

▶ since ϕ(x) concentrates around its mean,

Flip(x) = 1

{
ϕ(x) >

1

2

}
≈ 1

{
ϕ∞(x) >

1

2

}
= Yx,

for large N, where ϕ∞(x) := p(1− Yx) + (1− p)Yx.

▶ Thus, we get

Theorem
For all ϵ < η(p),

Pr [Flip = Y] ≥ 1− 32N3 · e− Nϵ2

8 .
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Conditioned on all child nodes being decoded correctly,

▶ aggregation reduces to checking if

ϕ(x) =
N−1∑
i=1

(Yx ⊕ Yx+bi )

is < or > N−1
2 .

▶ since ϕ(x) concentrates around its mean,

Flip(x) = 1

{
ϕ(x) >

1

2

}
≈ 1

{
ϕ∞(x) >

1

2

}
= Yx,
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▶ Thus, we get

Theorem
For all ϵ < η(p),

Pr
[
Y = 0

]
= Pr [Flip = Y] ≥ 1− 32N3 · e− Nϵ2
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RPA convergence in one iteration! 11 / 16



Putting everything together

RM(m, r)

. . .

RM(m − 1, r − 1)

Level 0

Level 1

RM(m − 2, r − 2)

. . .

Level 2

N − 1

N
2
− 1 N

2
− 1

...
...

...
...

RM(m − r + 2, 2) Level r − 2

N
4
− 1 N

4
− 1

RM(m − r + 1, 1) Level r − 1

N · 2r−2 − 1 N · 2r−2 − 1

Projection-aggregation tree

Via recursive arguments on the projection-aggregation tree, we get

Theorem
For any 0 < ϵ < η(p), we have that for r ≥ 2, using one-dimensional
subspaces for projection,

PRPA
err (RM(m, r)) ≤ 32N r+1 · exp

(
−2−r−1Nϵ2

)
.

12 / 16



Projections using higher dimensional subspaces

▶ If projections are carried out using k-dimensional subspaces, for
k > 1, then

RM(m, r)

. . .

RM(m − k , r − k)

Level 0

Level 1

RM(m − 2k , r − 2k)

. . .

Level 2

nk,m

nk,m−k nk,m−k

...
...

...
...

RM(m − r + 1, 1) Level
r − 1

k

nk,m−2k nk,m−2k

the branching factor is

#k-dim. subspaces of{0, 1}m =

[
m

k

]
:=

k−1∏
i=0

2m − 2i

2k − 2i
=: nk,m.

▶ Then, conditioned on all children being decoded correctly, the
concentration of ϕ(x) must be handled via more sophisticated
concentration inequalities.
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RPA, but using higher-dim. subspaces

Projection: For a received Y, pick each k-dim. subspace Bi in turn and
construct

Y/Bi
:=

(
Y/Bi

(T ) : T ∈ {0, 1}m/Bi

)
,

where Y/Bi
(T ) :=

⊕
b∈Bi

Yx⊕b.

RM(m, r)

. . .

RM(m − k, r − k)

Level 0

Level 1

RM(m − 2k, r − 2k)

. . .

Level 2

nk,m

nk,m−k nk,m−k

...
...

...
...

RM(m − r + 1, 1) Level
r − 1

k

nk,m−2k nk,m−2k
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RPA, but using higher-dim. subspaces

Aggregation: At a “parent node,” for each x ∈ {0, 1}m, compute

ϕ(x) =
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Elaborating on Step Agg

▶ Conditioned on all child nodes being decoded correctly,
aggregation reduces to checking if

ϕ(x) =

nk,m∑
i=1

⊕
b∈Bi

Yx⊕b,

is < or >
nk,m
2 .
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aggregation reduces to checking if

ϕ(x) =

nk,m∑
i=1

⊕
b∈Bi

Yx⊕b,

is < or >
nk,m
2 .

▶ Concentration of ϕ(x) about its mean, however, needs a more
sophisticated result:

Theorem (Raginsky-Sason (2018), Thm. 3.4.4)
Let X1, . . . ,Xn be i.i.d. Ber(q) random variables. Then, for every Lipschitz
function f : {0, 1}n → R with Lipschitz constant cf , we have for all α > 0,

Pr [f (X n)− E[f (X n)] > α] ≤ exp

(
− ln

(
1− q

q

)
· α2

nc2f · (1− 2q)

)
.
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Elaborating on Step Agg
▶ Conditioned on all child nodes being decoded correctly,

aggregation reduces to checking if

ϕ(x) =

nk,m∑
i=1

⊕
b∈Bi

Yx⊕b,

is < or >
nk,m
2 .

▶ An explicit computation of the Lipschitz constant cf associated with
ϕ, seen as a function of (Yx⊕b), then results in

Flip(x) = 1

{
ϕ(x) >

1

2

}
≈ 1

{
ϕ∞(x) >

1

2

}
= Yx,

for large N, for a suitably defined ϕ∞(x).

Theorem
For all ϵ smaller than a suitable function of p,

Pr [Flip = Y] ≥ 1− δm,

for an explicitly computable δm
m→∞−−−−→ 0.
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Further extensions

1. Can we extend similar analysis
to general BMS channels?

2. Can RPA decoding be made
more efficient by using a subset
of subspaces for projection?

Ongoing work with

Dorsa Fathollahi (PhD, Stanford U.),
Harshithanjani Athi (PhD, UT Austin),
Lalitha Vadlamani (IIIT-H)
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Thank You!


