
Coding Schemes Using Constrained Subcodes
Over Input-Constrained Channels

V. Arvind Rameshwar

Indian Institute of Science, Bangalore

TU Münich

September 2023

Our work was supported by

1 / 33

Acknowledgements

Prof. Navin Kashyap, my Ph.D. advisor
and collaborator on all the work

discussed today

Prof. Henry Pfister (Duke U.), for
stimulating discussions

The big picture

I Suppose that we wish to transmit a message m over a noisy medium
(or channel):

xn
Decoder

y n m̂m ∈
[
2nR
]

Encoder Channel

I Suppose also that we require the input xn to the channel to be
“constrained” to lie in An ⊆ {0, 1}n:

xn ∈ An
Decoder

y n m̂m ∈
[
2nR
]

Constrained
Encoder

Channel

2 / 33

The big picture

I Suppose that we wish to transmit a message m over a noisy medium
(or channel):

xn
Decoder

y n m̂m ∈
[
2nR
]

Encoder Channel

I Suppose also that we require the input xn to the channel to be
“constrained” to lie in An ⊆ {0, 1}n:

xn ∈ An
Decoder

y n m̂m ∈
[
2nR
]

Constrained
Encoder

Channel

2 / 33

The big picture

I Suppose also that we require the input xn to the channel to be
“constrained” to lie in An ⊆ {0, 1}n:

xn ∈ An
Decoder

y n m̂m ∈
[
2nR
]

Constrained
Encoder

Channel

I The broad question to be discussed in this talk:

Q) How does one design good coding schemes over such channels?

2 / 33

Some input constraints of interest

I Runlength-limited (RLL) constraints: Help alleviate ISI in
magneto-optical recording

. . . 0 1 0 0 0 1 0 0 0 0 0 1 0 0 . . . ←→

I Subblock composition constraints: Maintain receiver battery levels
in energy-harvesting communication

I Charge constraints: Ensure spectral nulls (DC-freeness) in frequency
spectrum

3 / 33

Channel models

Our focus today will be on the class of input-constrained discrete
memoryless channels (DMCs)1:

xn
Decoder

y n m̂m ∈
[
2nR
] . . .0 1 k

0

0

0

0

11

(Arbitrary) Constrained Encoder

DMC

PY |X
2

1

1Our bounds for input-constrained combinatorial noise channels can be found in V.
A. Rameshwar and N. Kashyap, “Estimating the sizes of binary error-correcting
constrained codes,” in IEEE JSAIT.

4 / 33

Background on input-constrained memoryless
channels

xn
Decoder

y n m̂m ∈
[
2nR
] . . .0 1 k

0

0

0

0

11

(Arbitrary) Constrained Encoder

DMC

PY |X
2

1

Background on DMCs

I For an unconstrained DMC,

xn
Decoder

y n m̂m ∈
[
2nR
]

Encoder DMC

PY |X

Theorem (Shannon (1948))
The capacity of an unconstrained DMC is

C = max
{P(x)}

IP(X ;Y). [Single-letter expression!]

Furthermore, explicit capacity-achieving codes such as LDPC codes, RM
codes, polar codes, are known.

5 / 33

Background on input-constrained DMCs

I We now (re-)introduce our input constraints, represented by
(labelled, directed) graphs:

xn
Decoder

y n m̂m ∈
[
2nR
] . . .0 1 k

0

0

0

0

11

(Arbitrary) Constrained Encoder

DMC

PY |X
2

1

I Such channels form a special class of input-driven finite-state
channels (FSCs), with a known initial state.

6 / 33

Background on input-constrained DMCs

I We now (re-)introduce our input constraints, represented by
(labelled, directed) graphs:

xn
Decoder

y n m̂m ∈
[
2nR
] . . .0 1 k

0

0

0

0

11

(Arbitrary) Constrained Encoder

DMC

PY |X
2

1

I Such channels form a special class of input-driven finite-state
channels (FSCs), with a known initial state.

Theorem (Blackwell, Breiman, Thomasian (1958) and Gallager (1968))

The capacity of an input-driven FSC with a fixed, known, initial state s0
is given by

C = lim
n→∞

max
{P(xn|s0)}

1

n
IP(X n;Y n | s0). [Multi-letter expression!]

6 / 33

Background on input-constrained DMCs

I We now (re-)introduce our input constraints, represented by
(labelled, directed) graphs:

xn
Decoder

y n m̂m ∈
[
2nR
] . . .0 1 k

0

0

0

0

11

(Arbitrary) Constrained Encoder

DMC

PY |X
2

1

I Such channels form a special class of input-driven finite-state
channels (FSCs), with a known initial state.

I Explicitly solving for C for general channels is a wide-open problem.

I Evaluating info. rate using simple (Markov) inputs ≡ Computing
entropy rate of a Hidden Markov Process [Hard!]

6 / 33

Background on BMS channels

In this talk, we restrict our attention to binary-input memoryless
symmetric (BMS) channels:

Y = (−1)X · Z ,

for noise Z independent of X .

Examples:

ε
ε

1− ε

1− ε

0

1

1

0

−1

Binary Erasure Channel (BEC)

p

p

1− p

1− p

0

1

1

−1

Binary Symmetric Channel (BSC)

7 / 33

BMS channels and linear codes

I Suppose that we were to use a linear code C over the BMS channel.

I Under (optimal) block-MAP decoding, the block-error probabilities
are independent of the codeword transmitted.

I Hence, constrained subcodes of C have the same (average) error
probabilities as C itself!

Our approach: Use constrained subcodes of capacity-achieving codes.

[cf. Reeves & Pfister (2022), Abbe & Sandon (2023), Arikan (2009) . . .]

A recurring task: Compute/estimate the rates of constrained subcodes of
linear codes.

8 / 33

BMS channels and linear codes

I Suppose that we were to use a linear code C over the BMS channel.

I Under (optimal) block-MAP decoding, the block-error probabilities
are independent of the codeword transmitted.

I Hence, constrained subcodes of C have the same (average) error
probabilities as C itself!

Our approach: Use constrained subcodes of capacity-achieving codes.

[cf. Reeves & Pfister (2022), Abbe & Sandon (2023), Arikan (2009) . . .]

A recurring task: Compute/estimate the rates of constrained subcodes of
linear codes.

8 / 33

Agenda

9 / 33

Coding Schemes Over (d ,∞)-RLL
Input-Constrained BMS Channels Using

Reed-Muller (RM) Codes

xn

Decoder
yn m̂m ∈

[
2nR
] . . .

. . .

0 1 d
0 0 0

0

11

Constrained Encoder
PY |X

Symmetric
Channel

The (d ,∞)-RLL constraint and RM codes

I A binary sequence satisfies the (d ,∞)-RLL constraint if there exist
at least d 0s between every pair of successive 1s.

I For the (2,∞)-RLL constraint,

1 0 0 0 1 0 0 0 0 1 0 0 1 X

1 0 0 1 0 1 0 0 0 1 0 0 1 X

The r th-order binary RM code RM(m, r) is defined as the set of
binary vectors:

RM(m, r) := {Eval(f) : f ∈ F2[x1, x2, . . . , xm], deg(f) ≤ r},

where deg(f) is the degree of the largest monomial in f and the
degree of a monomial xS :=

∏
j∈S:S⊆[m]

xj is simply |S |.

10 / 33

Selected results: explicit linear constrained codes

Theorem
For any R ∈ (0, 1), there exists an explicit sequence of (d ,∞)-RLL linear

subcodes
{
C(d)m

}
m≥1

of a sequence of RM codes of rate R such that

rate
(
C(d)m

)
m→∞−−−−→ R · 2−dlog2(d+1)e.

11 / 33

Selected results: explicit linear constrained codes

Theorem
For any R ∈ (0, 1), there exists an explicit sequence of (d ,∞)-RLL linear

subcodes
{
C(d)m

}
m≥1

of a sequence of RM codes of rate R such that

rate
(
C(d)m

)
m→∞−−−−→ R · 2−dlog2(d+1)e.

From the previous discussion, a rate of C · 2−dlog2(d+1)e is achiev-
able, where C is the capacity of the unconstrained BMS channel.

11 / 33

Selected results: explicit linear constrained codes

Theorem
For any R ∈ (0, 1), there exists an explicit sequence of (d ,∞)-RLL linear

subcodes
{
C(d)m

}
m≥1

of a sequence of RM codes of rate R such that

rate
(
C(d)m

)
m→∞−−−−→ R · 2−dlog2(d+1)e.

Theorem
For any R ∈ (0, 1) and for any sequence of RM codes of rate R, the
largest rate of linear (d ,∞)-RLL constrained subcodes is R

d+1 .

11 / 33

Selected results: explicit linear constrained codes

Theorem
For any R ∈ (0, 1), there exists an explicit sequence of (d ,∞)-RLL linear

subcodes
{
C(d)m

}
m≥1

of a sequence of RM codes of rate R such that

rate
(
C(d)m

)
m→∞−−−−→ R · 2−dlog2(d+1)e.

Theorem
For any R ∈ (0, 1) and for any sequence of RM codes of rate R, the
largest rate of linear (d ,∞)-RLL constrained subcodes is R

d+1 .

The linear constrained subcodes we constructed are hence essen-
tially rate-optimal!

11 / 33

Selected results: existence of nonlinear subcodes

Theorem
For any R ∈ (0, 1), there exists a sequence of (1,∞)-RLL subcodes{
Ĉ(d)m

}
m≥1

of a sequence of RM codes of rate R such that

rate
(
Ĉ(d)m

)
m→∞−−−−→ max

(
0,R − 3

8

)
.

These subcodes are necessarily non-linear for R > 0.75, since then
R − 3

8 >
R
2 .

How good are these rate lower bounds?

12 / 33

Selected results: existence of nonlinear subcodes

Theorem
For any R ∈ (0, 1), there exists a sequence of (1,∞)-RLL subcodes{
Ĉ(d)m

}
m≥1

of a sequence of RM codes of rate R such that

rate
(
Ĉ(d)m

)
m→∞−−−−→ max

(
0,R − 3

8

)
.

These subcodes are necessarily non-linear for R > 0.75, since then
R − 3

8 >
R
2 .

How good are these rate lower bounds?

12 / 33

A benchmark via the probabilistic method
I Consider an [n, nR] random linear code obtained via a random

parity-check matrix

I Assume that H is full rank. Now, for any x ∈ {0, 1}n,

Pr[x ∈ C] = Pr[H · xT = 0] =

(
1

2

)n(1−R)

.

I Hence, the expected number of constrained codewords is

E[N(C;Sd)] =
∑
x∈Sd

E[1{x ∈ C}]

= |Sd | · 2−n(1−R).

I Since |Sd | = 2n(κd+o(1)), there exist linear codes whose
Sd -constrained subcodes are of rate at least κd + R − 1.

13 / 33

A benchmark via the probabilistic method
I Consider an [n, nR] random linear code obtained via a random

parity-check matrix

I Assume that H is full rank. Now, for any x ∈ {0, 1}n,

Pr[x ∈ C] = Pr[H · xT = 0] =

(
1

2

)n(1−R)

.

I Hence, the expected number of constrained codewords is

E[N(C;Sd)] =
∑
x∈Sd

E[1{x ∈ C}]

= |Sd | · 2−n(1−R).

I Since |Sd | = 2n(κd+o(1)), there exist linear codes whose
Sd -constrained subcodes are of rate at least κd + R − 1.

13 / 33

A benchmark via the probabilistic method
I Consider an [n, nR] random linear code obtained via a random

parity-check matrix

I Assume that H is full rank. Now, for any x ∈ {0, 1}n,

Pr[x ∈ C] = Pr[H · xT = 0] =

(
1

2

)n(1−R)

.

I Hence, the expected number of constrained codewords is

E[N(C;Sd)] =
∑
x∈Sd

E[1{x ∈ C}]

= |Sd | · 2−n(1−R).

I Since |Sd | = 2n(κd+o(1)), there exist linear codes whose
Sd -constrained subcodes are of rate at least κd + R − 1.

13 / 33

Plots and Comparisons - I

Plot comparing the achievable rates using (1,∞)-RLL RM subcodes with the
lower bound via the probabilistic method that is approximately R − 0.3058

14 / 33

A concatenated coding scheme

We adopt the “reverse concatenation” strategy of [Bliss (1981)] and
[Mansuripur (1991)] that is commonly used to limit error propagation
during decoding of constrained codes.

15 / 33

A concatenated coding scheme

Encoding (the Bliss scheme):

15 / 33

A concatenated coding scheme

Encoding (the Bliss scheme):

15 / 33

A concatenated coding scheme

Encoding:

15 / 33

A concatenated coding scheme

Encoding+Decoding:

15 / 33

A concatenated coding scheme

Encoding+Decoding:

15 / 33

Coding theorem

Let C be the capacity of the unconstrained BMS channel.

Slight modifications to the previous concatenated coding scheme yield
the following coding theorem:

Theorem
For any R ∈ (0,C), there exists a sequence of (d ,∞)-RLL constrained
concatenated codes {Cconcm }m≥1 that achieves a rate lower bound given by

lim inf
m→∞

rate (Cconcm) ≥ κd · R2 · 2−dlog2(d+1)e

R2 · 2−dlog2(d+1)e + 1− R + ε
,

over (d ,∞)-RLL input-constrained BMS channels, where ε > 0 can be
arbitrarily small.

16 / 33

Coding theorem

Let C be the capacity of the unconstrained BMS channel.

Slight modifications to the previous concatenated coding scheme yield
the following coding theorem:

Theorem
For any R ∈ (0,C), there exists a sequence of (d ,∞)-RLL constrained
concatenated codes {Cconcm }m≥1 that achieves a rate lower bound given by

lim inf
m→∞

rate (Cconcm) ≥ κd · R2 · 2−dlog2(d+1)e

R2 · 2−dlog2(d+1)e + 1− R + ε
,

over (d ,∞)-RLL input-constrained BMS channels, where ε > 0 can be
arbitrarily small.

16 / 33

Plots and Comparisons - II

Figure: Plot comparing the achievable rates using (2,∞)-RLL linear RM
subcodes with the lower bound via the probabilistic method and the rate
achieved by the concatenated coding scheme

Can we extend our techniques to identifying constrained subcodes of
general linear codes, for arbitrary constraints?

17 / 33

Plots and Comparisons - II

Figure: Plot comparing the achievable rates using (2,∞)-RLL linear RM
subcodes with the lower bound via the probabilistic method and the rate
achieved by the concatenated coding scheme

Can we extend our techniques to identifying constrained subcodes of
general linear codes, for arbitrary constraints?

17 / 33

Counting constrained codewords in general linear
codes

The problem

I Motivated by the previous section, we now consider the problem of
computing rates of (arbitrarily-)constrained codewords in general
linear codes C.

I The problem: Given a set of constrained codewords A ⊆ Fn
2, we

would like to gain insight into

N(C;A) =
∑
x∈C

1{x ∈ A} =
∑

x∈{0,1}n
1{x ∈ A} · 1{x ∈ C}.

This looks like an inner product between Boolean functions!

18 / 33

The problem

I Motivated by the previous section, we now consider the problem of
computing rates of (arbitrarily-)constrained codewords in general
linear codes C.

I The problem: Given a set of constrained codewords A ⊆ Fn
2, we

would like to gain insight into

N(C;A) =
∑
x∈C

1{x ∈ A} =
∑

x∈{0,1}n
1{x ∈ A} · 1{x ∈ C}.

This looks like an inner product between Boolean functions!

18 / 33

The problem

I Motivated by the previous section, we now consider the problem of
computing rates of (arbitrarily-)constrained codewords in general
linear codes C.

I The problem: Given a set of constrained codewords A ⊆ Fn
2, we

would like to gain insight into

N(C;A) =
∑
x∈C

1{x ∈ A} =
∑

x∈{0,1}n
1{x ∈ A} · 1{x ∈ C}.

This looks like an inner product between Boolean functions!

18 / 33

A brief refresher on Fourier analysis on Fn
2

I Given any function f : {0, 1}n → R and a vector
s = (s1, . . . , sn) ∈ {0, 1}n, the Fourier coefficient of f at s is

f̂ (s) :=
1

2n

∑
x∈{0,1}n

f (x) · (−1)x·s .

I The functions (χs : s ∈ {0, 1}n), where χs(x) := (−1)x·s , form an
orthonormal basis for the vector space V of functions
f : {0, 1}n → R. The inner product 〈f , g〉 is

〈f , g〉 :=
1

2n

∑
x∈{0,1}n

f (x)g(x).

Theorem (Plancherel’s Theorem)
For any f , g ∈ {0, 1}n → R, we have that

〈f , g〉 =
∑

s∈{0,1}n
f̂ (s)ĝ(s).

19 / 33

Workhorse

I Observe that

N(C;A) = 2n ·
∑

s∈{0,1}n
1̂A(s) · 1̂C(s).

I For linear codes C, it is easy to show that

1̂C(s) =
|C|
2n
· 1C⊥(s).

I Hence,
N(C;A) = |C| ·

∑
s∈C⊥

1̂A(s).

1. If dim(C)� n/2, then we can employ our insight to count
over a low-dimensional space!

2. For many constraints of interest, the Fourier transform above
is analytically/numerically computable!

20 / 33

Workhorse

I Observe that

N(C;A) = 2n ·
∑

s∈{0,1}n
1̂A(s) · 1̂C(s).

I For linear codes C, it is easy to show that

1̂C(s) =
|C|
2n
· 1C⊥(s).

I Hence,
N(C;A) = |C| ·

∑
s∈C⊥

1̂A(s).

1. If dim(C)� n/2, then we can employ our insight to count
over a low-dimensional space!

2. For many constraints of interest, the Fourier transform above
is analytically/numerically computable!

20 / 33

Workhorse

I Observe that

N(C;A) = 2n ·
∑

s∈{0,1}n
1̂A(s) · 1̂C(s).

I For linear codes C, it is easy to show that

1̂C(s) =
|C|
2n
· 1C⊥(s).

I Hence,
N(C;A) = |C| ·

∑
s∈C⊥

1̂A(s).

1. If dim(C)� n/2, then we can employ our insight to count
over a low-dimensional space!

2. For many constraints of interest, the Fourier transform above
is analytically/numerically computable!

20 / 33

Example 1: 2-charge constraint

I We consider a spectral null constraint, whose sequences in
{+1,−1}n have a null at zero frequency.

I We let S2 denote those sequences in {0, 1}n that can be mapped to
2-charge constrained sequences via the map x 7→ (−1)x , for
x ∈ {0, 1}.

0 1 2

0 0

11

Sequences in S2 can be read off the labels of paths here.

21 / 33

Computation of Fourier coefficients and consequences

Theorem
There exists a vector space V such that for s ∈ V ,

1̂S2 (s) = 2b
n
2c−n · (−1)γ(s),

where γ : {0, 1}n → {0, 1}. Further, for s /∈ V , we have 1̂S2 (s) = 0.

22 / 33

Computation of Fourier coefficients and consequences

Theorem
There exists a vector space V such that for s ∈ V ,

1̂S2 (s) = 2b
n
2c−n · (−1)γ(s),

where γ : {0, 1}n → {0, 1}. Further, for s /∈ V , we have 1̂S2 (s) = 0.

We use this theorem to construct a sequence {C(n)}n≥1 of linear codes of
rate R such that the rate of their S2-constrained subcodes obeys

lim inf
n→∞

rate
(
C(n)2

)
> R − 1

2
.

We thus obtain rates better than what is guaranteed via the
probabilistic method, using explicit linear codes!

22 / 33

Computation of Fourier coefficients and consequences

Theorem
There exists a vector space V such that for s ∈ V ,

1̂S2 (s) = 2b
n
2c−n · (−1)γ(s),

where γ : {0, 1}n → {0, 1}. Further, for s /∈ V , we have 1̂S2 (s) = 0.

We can also use the theorem to count S2-constrained codewords in
well-known linear codes:

(m, r) (5, 3) (6, 4) (7, 5) (8, 6)
N(RM(m, r);S2) 2048 6.711× 107 1.441× 1017 1.329× 1036

Some sample numerical values for high rate RM codes

22 / 33

Example 2: (d ,∞)-RLL constraint

I Recall:

(d ,∞)-RLL ≡ at least d 0s b/w successive 1s

I Let Sd denote the set of constrained sequences and 1̂Sd

(n)
denote

the Fourier transform at blocklength n ≥ 1.

Theorem
For n ≥ d + 2 and for s = (s1, . . . , sn) ∈ {0, 1}n,

1̂Sd

(n)
(s) = 2−1 · 1̂Sd

(n−1)
(sn2) + (−1)s1 · 2−(d+1) · 1̂Sd

(n−d−1) (
snd+2

)
.

23 / 33

Example 2: (d ,∞)-RLL constraint

I Recall:

(d ,∞)-RLL ≡ at least d 0s b/w successive 1s

I Let Sd denote the set of constrained sequences and 1̂Sd

(n)
denote

the Fourier transform at blocklength n ≥ 1.

Theorem
For n ≥ d + 2 and for s = (s1, . . . , sn) ∈ {0, 1}n,

1̂Sd

(n)
(s) = 2−1 · 1̂Sd

(n−1)
(sn2) + (−1)s1 · 2−(d+1) · 1̂Sd

(n−d−1) (
snd+2

)
.

23 / 33

Example 2: (d ,∞)-RLL constraint

I Recall:

(d ,∞)-RLL ≡ at least d 0s b/w successive 1s

I Let Sd denote the set of constrained sequences and 1̂Sd

(n)
denote

the Fourier transform at blocklength n ≥ 1.

Theorem
For n ≥ d + 2 and for s = (s1, . . . , sn) ∈ {0, 1}n,

1̂Sd

(n)
(s) = 2−1 · 1̂Sd

(n−1)
(sn2) + (−1)s1 · 2−(d+1) · 1̂Sd

(n−d−1) (
snd+2

)
.

The recursive procedure arising from the above theorem is faster
for computing Fourier transforms than the Fast Walsh-Hadamard

Transform!

23 / 33

Example 2: (d ,∞)-RLL constraint

I Recall:

(d ,∞)-RLL ≡ at least d 0s b/w successive 1s

I Let Sd denote the set of constrained sequences and 1̂Sd

(n)
denote

the Fourier transform at blocklength n ≥ 1.

Theorem
For n ≥ d + 2 and for s = (s1, . . . , sn) ∈ {0, 1}n,

1̂Sd

(n)
(s) = 2−1 · 1̂Sd

(n−1)
(sn2) + (−1)s1 · 2−(d+1) · 1̂Sd

(n−d−1) (
snd+2

)
.

Similar recurrence relations can also be proved for the flash
memory (“no-101”) constraint and a version of the even

constraint, which requires that the length of every run of 0s be
even.

23 / 33

Example 2: (d ,∞)-RLL constraint

I Recall:

(d ,∞)-RLL ≡ at least d 0s b/w successive 1s

I Let Sd denote the set of constrained sequences and 1̂Sd

(n)
denote

the Fourier transform at blocklength n ≥ 1.

Theorem
For n ≥ d + 2 and for s = (s1, . . . , sn) ∈ {0, 1}n,

1̂Sd

(n)
(s) = 2−1 · 1̂Sd

(n−1)
(sn2) + (−1)s1 · 2−(d+1) · 1̂Sd

(n−d−1) (
snd+2

)
.

However, counting in the space of the dual code C⊥ requires us to
store all Fourier coefficients at blocklength n—a task that can

quickly become very expensive.

Can we shoot for something less accurate, but more efficient?

23 / 33

Estimates of the Sizes of Constrained Subcodes of
RM Codes via Sampling2

2With help from Shreyas Jain, IISER Mohali, India

The problem

Consider again our recurring (and yet unanswered) question:

I Suppose that C is RM(m, r). Can we obtain approximate estimates
of NA = N(C;A), for arbitrary constraints?

I More precisely, can we efficiently (poly. time?) obtain an estimate

N̂A, such that with high probability,

N̂A ∈ [(1− ε)NA, (1 + ε)NA],

for some arbitrarily small ε > 0 ?

24 / 33

The problem

Consider again our recurring (and yet unanswered) question:

I Suppose that C is RM(m, r). Can we obtain approximate estimates
of NA = N(C;A), for arbitrary constraints?

I More precisely, can we efficiently (poly. time?) obtain an estimate

N̂A, such that with high probability,

N̂A ∈ [(1− ε)NA, (1 + ε)NA],

for some arbitrarily small ε > 0 ?

24 / 33

Constraints of interest and a first pass

I We are primarily interested in the (d ,∞)-RLL constraint and in
constant-weight constraints.

I Suppose that we try to build an estimator via a simple “rejection
sampling” approach:

1. Draw n uniformly random codewords from RM(m, r).

2. Set N̂A = |RM(m, r)| ×
(

#{samples in A}
n

)
.

Clearly, for n large, we have that N̂A ∈ [(1− ε)NA, (1 + ε)NA].

I Fact: For most weights [cf. Rao and Sprumont (2022)] and for
d = 1 [Rameshwar and Kashyap (2023)], NA is exponentially smaller
than RM(m, r).

Can we design a good estimator that uses only poly. many samples?

25 / 33

Constraints of interest and a first pass

I We are primarily interested in the (d ,∞)-RLL constraint and in
constant-weight constraints.

I Suppose that we try to build an estimator via a simple “rejection
sampling” approach:

1. Draw n uniformly random codewords from RM(m, r).

2. Set N̂A = |RM(m, r)| ×
(

#{samples in A}
n

)
.

Clearly, for n large, we have that N̂A ∈ [(1− ε)NA, (1 + ε)NA].

I Fact: For most weights [cf. Rao and Sprumont (2022)] and for
d = 1 [Rameshwar and Kashyap (2023)], NA is exponentially smaller
than RM(m, r).

Can we design a good estimator that uses only poly. many samples?

25 / 33

Constraints of interest and a first pass
I We are primarily interested in the (d ,∞)-RLL constraint and in

constant-weight constraints.

I Suppose that we try to build an estimator via a simple “rejection
sampling” approach:

1. Draw n uniformly random codewords from RM(m, r).

2. Set N̂A = |RM(m, r)| ×
(

#{samples in A}
n

)
.

Clearly, for n large, we have that N̂A ∈ [(1− ε)NA, (1 + ε)NA].

I Fact: For most weights [cf. Rao and Sprumont (2022)] and for
d = 1 [Rameshwar and Kashyap (2023)], NA is exponentially smaller
than RM(m, r).

Hence, exponentially many (in n) samples needed!

Can we design a good estimator that uses only poly. many samples?

25 / 33

Constraints of interest and a first pass

I We are primarily interested in the (d ,∞)-RLL constraint and in
constant-weight constraints.

I Suppose that we try to build an estimator via a simple “rejection
sampling” approach:

1. Draw n uniformly random codewords from RM(m, r).

2. Set N̂A = |RM(m, r)| ×
(

#{samples in A}
n

)
.

Clearly, for n large, we have that N̂A ∈ [(1− ε)NA, (1 + ε)NA].

I Fact: For most weights [cf. Rao and Sprumont (2022)] and for
d = 1 [Rameshwar and Kashyap (2023)], NA is exponentially smaller
than RM(m, r).

Can we design a good estimator that uses only poly. many samples?

25 / 33

Key insight

I Observe that NA = Z , the partition function of the distribution p,
where

p(x) =
1

Z
· 1C∩A(x), x ∈ {0, 1}n.

I While it is hard to compute Z and indeed even sample from p,
consider now the Gibbs distribution pβ , for β > 0:

pβ(x) =
1

Zβ
· e−β·E(x), x ∈ C,

where E (x) ≥ 0 with equality iff x ∈ A, and

Zβ =
∑
c∈C

e−β·E(x).

26 / 33

Key insight

I Observe that NA = Z , the partition function of the distribution p,
where

p(x) =
1

Z
· 1C∩A(x), x ∈ {0, 1}n.

I While it is hard to compute Z and indeed even sample from p,
consider now the Gibbs distribution pβ , for β > 0:

pβ(x) =
1

Zβ
· e−β·E(x), x ∈ C,

where E (x) ≥ 0 with equality iff x ∈ A, and

Zβ =
∑
c∈C

e−β·E(x).

26 / 33

Key insight

I Observe that NA = Z , the partition function of the distribution p,
where

p(x) =
1

Z
· 1C∩A(x), x ∈ {0, 1}n.

I While it is hard to compute Z and indeed even sample from p,
consider now the Gibbs distribution pβ , for β > 0:

pβ(x) =
1

Zβ
· e−β·E(x), x ∈ C,

where E (x) ≥ 0 with equality iff x ∈ A, and

Zβ =
∑
c∈C

e−β·E(x).

I Examples:

I (d ,∞)-RLL constraint: E(x) = #{violations of the constraint in x}
I Constant-weight ω constraint: E(x) = |w(x)− ω|

26 / 33

Key insight
I Observe that NA = Z , the partition function of the distribution p,

where

p(x) =
1

Z
· 1C∩A(x), x ∈ {0, 1}n.

I While it is hard to compute Z and indeed even sample from p,
consider now the Gibbs distribution pβ , for β > 0:

pβ(x) =
1

Zβ
· e−β·E(x), x ∈ C,

where E (x) ≥ 0 with equality iff x ∈ A, and

Zβ =
∑
c∈C

e−β·E(x).

I Note that

lim
β→∞

pβ(x) = p(x), and

lim
β→∞

Zβ = Z .

26 / 33

Key insight
I Observe that NA = Z , the partition function of the distribution p,

where

p(x) =
1

Z
· 1C∩A(x), x ∈ {0, 1}n.

I While it is hard to compute Z and indeed even sample from p,
consider now the Gibbs distribution pβ , for β > 0:

pβ(x) =
1

Zβ
· e−β·E(x), x ∈ C,

where E (x) ≥ 0 with equality iff x ∈ A, and

Zβ =
∑
c∈C

e−β·E(x).

I Note that

lim
β→∞

pβ(x) = p(x), and

lim
β→∞

Zβ = Z .

We use Zβ , for large β, as a “good” approximation to Z = NA.
26 / 33

An MCMC scheme to sample from pβ
Before we compute Zβ , we propose an efficient sampler from pβ .

1: procedure MCMC-Sampler
2: Start at an arbitrary codeword c0 ∈ C.
3: Fix a large epoch length τ .
4: for i = 1 : τ do
5: Sample a uniformly random min.-wt.

codeword c .
6: Set c i ← c i−1 + c w.p.

min
(
1, exp(−β(E (c)− E (c(i−1))))

)
.

7: Output cτ .

Facts:

1. We can efficiently draw uniformly random min.-wt. codewords from
RM(m, r) using the correspondence with (m − r)-dimensional affine
subspaces.

2. The Markov chain above is irreducible (min.-wt. codewords span the
code!) and has pβ as stationary distribution.

27 / 33

An MCMC scheme to sample from pβ
Before we compute Zβ , we propose an efficient sampler from pβ .

1: procedure MCMC-Sampler
2: Start at an arbitrary codeword c0 ∈ C.
3: Fix a large epoch length τ .
4: for i = 1 : τ do
5: Sample a uniformly random min.-wt.

codeword c .
6: Set c i ← c i−1 + c w.p.

min
(
1, exp(−β(E (c)− E (c(i−1))))

)
.

7: Output cτ .

Facts:

1. We can efficiently draw uniformly random min.-wt. codewords from
RM(m, r) using the correspondence with (m − r)-dimensional affine
subspaces.

2. The Markov chain above is irreducible (min.-wt. codewords span the
code!) and has pβ as stationary distribution.

27 / 33

From sampling to counting
Fix a large β? > 0. The following technique to compute Zβ? is
well-known [Valleau and Card (1972)].

I Let β? = `/n and fix a “cooling schedule” of β parameters:

0 = β0 < β1 < . . . < β` = β?,

where βi = βi−1 + 1/n, for 1 ≤ i ≤ `.

I Write

Zβ? = Zβ0 ×
∏̀
i=1

Zβi

Zβi−1

. (1)

I Observe that

Zβi

Zβi−1

=
1

Zβi−1

∑
c∈C

exp(−βiE (c))

= Epβi−1
[exp((βi−1 − βi)E (c))].

I Use a sample-average estimator for the expectation above and
compute a final estimate Ẑβ? , using (1).

28 / 33

From sampling to counting
Fix a large β? > 0. The following technique to compute Zβ? is
well-known [Valleau and Card (1972)].

I Let β? = `/n and fix a “cooling schedule” of β parameters:

0 = β0 < β1 < . . . < β` = β?,

where βi = βi−1 + 1/n, for 1 ≤ i ≤ `.
I Write

Zβ? = Zβ0 ×
∏̀
i=1

Zβi

Zβi−1

. (1)

I Observe that

Zβi

Zβi−1

=
1

Zβi−1

∑
c∈C

exp(−βiE (c))

= Epβi−1
[exp((βi−1 − βi)E (c))].

I Use a sample-average estimator for the expectation above and
compute a final estimate Ẑβ? , using (1).

28 / 33

From sampling to counting
Fix a large β? > 0. The following technique to compute Zβ? is
well-known [Valleau and Card (1972)].

I Let β? = `/n and fix a “cooling schedule” of β parameters:

0 = β0 < β1 < . . . < β` = β?,

where βi = βi−1 + 1/n, for 1 ≤ i ≤ `.
I Write

Zβ? = Zβ0 ×
∏̀
i=1

Zβi

Zβi−1

. (1)

I Observe that

Zβi

Zβi−1

=
1

Zβi−1

∑
c∈C

exp(−βiE (c))

= Epβi−1
[exp((βi−1 − βi)E (c))].

I Use a sample-average estimator for the expectation above and
compute a final estimate Ẑβ? , using (1).

28 / 33

From sampling to counting
Fix a large β? > 0. The following technique to compute Zβ? is
well-known [Valleau and Card (1972)].

I Let β? = `/n and fix a “cooling schedule” of β parameters:

0 = β0 < β1 < . . . < β` = β?,

where βi = βi−1 + 1/n, for 1 ≤ i ≤ `.
I Write

Zβ? = Zβ0 ×
∏̀
i=1

Zβi

Zβi−1

. (1)

I Observe that

Zβi

Zβi−1

=
1

Zβi−1

∑
c∈C

exp(−βiE (c))

= Epβi−1
[exp((βi−1 − βi)E (c))].

I Use a sample-average estimator for the expectation above and
compute a final estimate Ẑβ? , using (1).

28 / 33

How many samples are enough?

We now provide some theoretical guarantees [cf. Lecture notes on
“Partition Functions” by Alistair Sinclair (2020)].

I Firstly, it suffices for β? = O(n2) to have

(1− δn)Z ≤ Zβ? ≤ (1 + δn)Z ,

where δn → 0 exponentially quickly.

I Secondly, for the number of samples used for each sample average
estimator being Θ(n3), we have [Dyer and Frieze (1991)]

Pr[(1− ε)Zβ? ≤ Ẑβ? ≤ (1 + ε)Zβ?] ≥ 3

4
.

I Thus, using only Θ(n6) samples overall, we obtain that

Pr[(1− ε)(1 + δn)NA ≤ Ẑβ? ≤ (1 + ε)(1 + δn)NA] ≥ 3

4
.

I The constant 3
4 above can be improved to 1− γ, for γ > 0

arbitrarily small, using a “median-of-batches” trick.

29 / 33

How many samples are enough?

We now provide some theoretical guarantees [cf. Lecture notes on
“Partition Functions” by Alistair Sinclair (2020)].

I Firstly, it suffices for β? = O(n2) to have

(1− δn)Z ≤ Zβ? ≤ (1 + δn)Z ,

where δn → 0 exponentially quickly.

I Secondly, for the number of samples used for each sample average
estimator being Θ(n3), we have [Dyer and Frieze (1991)]

Pr[(1− ε)Zβ? ≤ Ẑβ? ≤ (1 + ε)Zβ?] ≥ 3

4
.

I Thus, using only Θ(n6) samples overall, we obtain that

Pr[(1− ε)(1 + δn)NA ≤ Ẑβ? ≤ (1 + ε)(1 + δn)NA] ≥ 3

4
.

I The constant 3
4 above can be improved to 1− γ, for γ > 0

arbitrarily small, using a “median-of-batches” trick.

29 / 33

How many samples are enough?

We now provide some theoretical guarantees [cf. Lecture notes on
“Partition Functions” by Alistair Sinclair (2020)].

I Firstly, it suffices for β? = O(n2) to have

(1− δn)Z ≤ Zβ? ≤ (1 + δn)Z ,

where δn → 0 exponentially quickly.

I Secondly, for the number of samples used for each sample average
estimator being Θ(n3), we have [Dyer and Frieze (1991)]

Pr[(1− ε)Zβ? ≤ Ẑβ? ≤ (1 + ε)Zβ?] ≥ 3

4
.

I Thus, using only Θ(n6) samples overall, we obtain that

Pr[(1− ε)(1 + δn)NA ≤ Ẑβ? ≤ (1 + ε)(1 + δn)NA] ≥ 3

4
.

I The constant 3
4 above can be improved to 1− γ, for γ > 0

arbitrarily small, using a “median-of-batches” trick.
29 / 33

Numerical trials - I

m r log2 Ẑ
2m

log2 Z
2m

6 2 0.1557 0.1508
7 2 0.0883 0.0880
8 1 0.0095 0.0078
7 5 0.6340 −
8 3 0.1391 −
8 4 0.3343 −
8 5 0.5520 −

Table: Table of estimated rates rates log2 Ẑ
2m

of (1,∞)-RLL constrained
codewords in RM(m, r), for different values m ≥ 1, r ≤ m, compared with the
true rates log2 Z

2m
whenever a brute-force enumeration is tractable.

30 / 33

Numerical trials - II

Plot comparing the rate estimates of the weight enumerators with the rates of
the true weight enumerators of RM(6, 3).

31 / 33

Numerical trials - III

Plot comparing the rate estimates of the weight enumerators with the rates of
the true weight enumerators of RM(7, 3), obtained in [Sugino, Ienaga, Tokura,
and Kasami (1971)].

We also obtain estimates of the hitherto unknown weight distribution of
RM(9, 4), using our techniques.

32 / 33

Numerical trials - III

Plot comparing the rate estimates of the weight enumerators with the rates of
the true weight enumerators of RM(7, 3), obtained in [Sugino, Ienaga, Tokura,
and Kasami (1971)].

We also obtain estimates of the hitherto unknown weight distribution of
RM(9, 4), using our techniques.

32 / 33

Open questions for further research

Open questions

I Is it possible to prove (analytically) that the asymptotic rate of
(d , k)-RLL constrained subcodes of rate R RM codes is κ · R? This
would then help resolve [Wolf’s Conjecture (1988)] for the
(d , k)-RLL input-constrained BSC(p):

Cd,k(p) ≥ κd,k(1− hb(p)).

I Can one design explicit codes over other channels with memory, such
as Gilbert-Elliott Channels, using RM/polar codes?

33 / 33

Thank You!

