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Abstract

The setting of the transmission of information over noisy, binary-input, memoryless

channels is today well-understood, owing to the work of several information theorists,

beginning with Claude Shannon. It is known that it is impossible to transmit infor-

mation reliably over such channels at rates larger than the fundamental limit that is

the capacity of the channel. Moreover, progress made in the last three decades has led

to the construction of explicit, practically-implementable coding schemes that achieve

rates arbitrarily close to the capacities of such channels. Now, suppose that the inputs

of the memoryless channel are required to obey an additional constraint, which stems

from physical limitations of the medium over which transmission or storage occurs.

What then can be said about the fundamental limits of information transmission over

such input-constrained channels, with and without decoder feedback? Is it possible to

design good constrained coding schemes of high rate over these channels? If the chan-

nel introduces errors adversarially, instead of randomly, how much information can

then be sent through, reliably? This dissertation explores answers to such questions.

We first derive computable lower bounds on the capacities of runlength limited

(RLL) input-constrained memoryless channels, such as the binary symmetric and bi-

nary erasure channels (BSC and BEC, respectively), by considering random Markov

input distributions that respect the constraint. These bounds unify well-known ap-

proaches in the literature, and extend them to the so-called input-driven finite-state

channels (FSCs). For the special case of the BEC with a no-consecutive-ones input con-

straint, we discuss an iterative stochastic approximation algorithm that numerically
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computes achievable rates that are very close to known upper bounds on the capac-

ity of the channel. We also derive improved analytical lower bounds, for this specific

channel.

Next, we consider the special case of the (d, ∞)-runlength limited (RLL) constraint,

which mandates that any pair of successive 1s be separated by at least d 0s. We de-

sign explicit coding schemes, derived from Reed-Muller (RM) codes, for transmission

over binary-input memoryless symmetric (BMS) channels, whose inputs respect the

constraint. In particular, we provide constructions using constrained subcodes of RM

codes, analytically compute their rates, and derive converse upper bounds on the rates

of the largest constrained subcodes of RM codes. We also provide a Fourier-theoretic

perspective on the problem of counting arbitrarily-constrained codewords in general

linear codes, which can help estimate the rates achievable by using linear codes over

input-constrained BMS channels. We illustrate the utility of our method using the

somewhat surprising observation that for different constraints of interest, the Fourier

transforms of the indicator functions of the constraints are efficiently computable.

We then shift our attention to the setting of the (d, ∞)-RLL input-constrained BEC

in the presence of noiseless feedback from the decoder. We demonstrate a simple,

labelling-based, zero-error feedback coding scheme, which we prove to be feedback

capacity-achieving, and, as a by-product, obtain an explicit characterization of the

feedback capacity. The feedback capacity thus computed is an upper bound on the

non-feedback capacity of such a channel. Numerical comparisons made with upper

bounds on the non-feedback capacity then reveal that that feedback increases the ca-

pacity of such a channel, at least for select values of d.

Finally, we consider the setting of an input-constrained adversarial channel, where

there is an upper bound on the number of bit-flip errors that the channel can introduce,

and we seek to design codes that can be recovered with zero error. We present numer-

ical upper bounds on the sizes of the largest such codes, via a version of Delsarte’s

linear program. We observe that for different constraints of interest, our upper bounds

beat the “generalized sphere packing bounds” that are the state-of-the-art.



Publications Based on this Thesis

Submissions to Journals

(J1) V. A. Rameshwar and N. Kashyap, “Estimating the sizes of binary error-correcting

constrained codes,” to appear in the IEEE Journal on Selected Areas in Informa-

tion Theory, Jan. 2023.

(J2) V. A. Rameshwar and N. Kashyap, “Coding schemes based on Reed-Muller codes

for (d, ∞)-RLL input-constrained channels,” submitted to the IEEE Transactions

on Information Theory, Oct. 2022.

Conference Papers (Accepted/Submitted)

(C1) V. A. Rameshwar and N. Kashyap, “A version of Delsarte’s linear program for

constrained systems,” 2023 IEEE International Symposium on Information The-

ory (ISIT), Taipei, Taiwan. Recipient of a Jack Keil Wolf ISIT Student Paper

Award.

(C2) V. A. Rameshwar and N. Kashyap, “Counting constrained codewords in binary

linear codes via Fourier expansions,” 2023 IEEE International Symposium on In-

formation Theory (ISIT), Taipei, Taiwan.

(C3) V. A. Rameshwar and N. Kashyap, “Linear runlength-limited subcodes of Reed-

Muller codes and coding schemes for input-constrained BMS channels,” 2022

IEEE Information Theory Workshop (ITW), Mumbai, Nov. 6–9, 2022.

(C4) V. A. Rameshwar and N. Kashyap, “A feedback capacity-achieving coding scheme

iii



Publications Based on this Thesis iv

for the (d, ∞)-RLL input-constrained binary erasure channel,” 2022 IEEE Inter-

national Conference on Signal Processing and Communications (SPCOM), Jul.

11–15, 2022. Recipient of a Best Student Paper Award.

(C5) V. A. Rameshwar and N. Kashyap, “On the performance of Reed-Muller codes

over (d, ∞)-RLL input-constrained BMS channels,” 2022 IEEE International Sym-

posium on Information Theory (ISIT), Espoo, Finland, Jun. 26–Jul. 1, 2022.

(C6) V. A. Rameshwar and N. Kashyap, “Numerically computable lower bounds on

the capacity of the (1, ∞)-RLL input-constrained binary erasure channel,” 2021

National Conference on Communications (NCC), Kanpur, Jul. 27–30, 2021. Re-

cipient of a Best Paper Award.

(C7) V. A. Rameshwar and N. Kashyap, “Bounds on the feedback capacity of the

(d, ∞)-RLL input-constrained binary erasure channel,” 2021 IEEE International

Symposium on Information Theory (ISIT), Melbourne, Victoria, Australia, Jul.

12–20, 2021.

(C8) V. A. Rameshwar and N. Kashyap, “Computable lower bounds for capacities of

input-driven finite-state channels,” 2020 IEEE International Symposium on Infor-

mation Theory (ISIT), Los Angeles, California, USA, Jun. 21–26, 2020.



Preface

All the work discussed in this thesis was done in collaboration with Prof. Navin

Kashyap of the Department of ECE, IISc, Bengaluru.

Chapter 4 covers material from (C6) and (C8), on bounds on the capacities of certain

input-constrained memoryless channels. Chapters 5 and 6, on coding schemes over

(d, ∞)-RLL input-constrained BMS channels using Reed-Muller codes, discusses the

results in (J2), which, in turn, contains the material in (C3) and (C5), in addition to more

theorems and proofs. Chapters 7 and 9, which are on estimates of the sizes of error-

correcting constrained codes, are based on the work in (C1) and (C2), respectively,

which are contained in (J1). The material in Chapter 8, on the feedback capacity of the

(d, ∞)-RLL input-constrained BEC, is from (C4), which subsumes the results in (C7).

v



Contents

Acknowledgments i

Abstract i

Publications Based on this Thesis iii

Preface v

Keywords xiii

Notation xiv

1 A Layman’s Introduction 1

2 A Technical Introduction 4
2.1 Summary of Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Channel Models 8

4 Bounds on the Capacities of Input-Constrained Channels 12
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Channel Model and Literature Survey . . . . . . . . . . . . . . . . . . . . 13
4.3 Simple Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Improvements for the (1, ∞)-RLL Input-Constrained BEC . . . . . . . . . 24

4.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Conclusions and Directions for Future Work . . . . . . . . . . . . . . . . 34

5 Constrained Coding Schemes Using RM Codes: Achievable Rates 36
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Some Approaches From Prior Art . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Summary of Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Notation and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



CONTENTS vii

5.4.2 Information Theoretic Preliminaries . . . . . . . . . . . . . . . . . 41
5.4.3 Reed-Muller Codes: Definitions and BMS Channel Performance . 43

5.5 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5.1 Rates of Subcodes Under the Lexicographic Coordinate Ordering 46
5.5.2 Rates Using Other Coding Strategies . . . . . . . . . . . . . . . . . 48

5.6 Achievable Rates Using Subcodes . . . . . . . . . . . . . . . . . . . . . . . 50
5.6.1 Construction of Linear (d, ∞)-RLL Constrained Subcodes . . . . 52
5.6.2 Existence of Larger (Potentially) Non-Linear (1, ∞)-RLL Constrained

Subcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.7 A Two-Stage Constrained Coding Scheme . . . . . . . . . . . . . . . . . . 61
5.8 Conclusions and Directions for Future Work . . . . . . . . . . . . . . . . 68

6 Constrained Coding Schemes Using RM Codes: Upper Bounds 69
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.1 Upper Bounds on Rates Under the Lexicographic Coordinate Or-
dering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.2 Rates of Subcodes Under Alternative Coordinate Orderings . . . 73
6.3 Upper Bounds on Rates of Constrained Subcodes . . . . . . . . . . . . . 76

6.3.1 Linear Subcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.2 General Subcodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.3 Alternative Coordinate Orderings . . . . . . . . . . . . . . . . . . 90

6.4 Conclusions and Directions for Future Work . . . . . . . . . . . . . . . . 94

7 Counting Constrained Codewords in Binary Linear Codes 96
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2 Some Approaches from Prior Art . . . . . . . . . . . . . . . . . . . . . . . 97
7.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3.2 Block Codes and Constrained Sequences . . . . . . . . . . . . . . 98
7.3.3 Fourier Expansions of Functions . . . . . . . . . . . . . . . . . . . 98

7.4 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.5 Applications: Explicitly Computable Fourier Coefficients . . . . . . . . . 102

7.5.1 2-Charge Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.5.2 Constant Subblock-Composition Constraint . . . . . . . . . . . . 109

7.6 Applications: Numerically Computable Fourier Coefficients . . . . . . . 113
7.6.1 (d, ∞)-Runlength Limited Constraint . . . . . . . . . . . . . . . . 114

7.7 Conclusions and Directions for Future Work . . . . . . . . . . . . . . . . 116

8 Coding Schemes for Runlength-Limited BECs With Feedback 118
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.2 Literature Survey and Our Work . . . . . . . . . . . . . . . . . . . . . . . 119
8.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



CONTENTS viii

8.3.2 Q-graphs and (S, Q)-graphs . . . . . . . . . . . . . . . . . . . . . . 124
8.3.3 Bounds on Feedback Capacity . . . . . . . . . . . . . . . . . . . . 125

8.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.4.1 Capacity With Feedback . . . . . . . . . . . . . . . . . . . . . . . . 125

8.5 Optimal Feedback Coding Scheme . . . . . . . . . . . . . . . . . . . . . . 131
8.6 Conclusions and Directions for Future Work . . . . . . . . . . . . . . . . 141

9 A Version of Delsarte’s Linear Program for Constrained Systems 144
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.2 Brief Literature Survey and Our Approach . . . . . . . . . . . . . . . . . 145
9.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
9.4 Our Linear Program for Constrained Systems . . . . . . . . . . . . . . . . 147
9.5 Symmetrizing Del(n, d;A) . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.6 Numerical Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.6.1 2-Charge Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.6.2 Constant Subblock Composition Constraint . . . . . . . . . . . . . 160
9.6.3 Tail-Biting Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.7 Conclusions and Directions for Future Work . . . . . . . . . . . . . . . . 164

10 Conclusions and Future Work 166

References 167



List of Tables

7.1 Table of values of N(RM(m, r); S2), for select parameters m and r . . . . 109
7.2 Table of values of N(C; S(1,∞))), for select codes C . . . . . . . . . . . . . 116

9.1 Table of optimal values of the symmetrized Del/GS2
(n, d; S2) LP, the gen-

eralized sphere packing bound LP GenSph(n, d; S2) in [102] and [100],
and the Del(n, d) LP, for n = 13 and varying values of d. . . . . . . . . . . 160

9.2 Table of optimal values of the Del/GC2
5
(n, d; C2

5) LP, and the generalized

sphere packing bound LP GenSph(n, d; C2
5), for (n, p, z) = (14, 2, 5), and

varying values of d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.3 Table of optimal values of the Del/GC3

2
(n, d; C3

2) LP, and the generalized

sphere packing bound LP GenSph(n, d; C3
2), for (n, p, z) = (15, 3, 2), and

varying values of d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
9.4 Table of optimal values of the Del/G

Stail
(1,∞)

(n, d; Stail
(1,∞)

) LP, the generalized

sphere packing bound LP GenSph(n, d; Stail
(1,∞)

) in [102] and [100], and
Del(n, d), for n = 13, and varying values of d. . . . . . . . . . . . . . . . . 165

ix



List of Figures

3.1 The channel model of a DMC without feedback . . . . . . . . . . . . . . 9
3.2 The channel model of an input-constrained DMC without feedback . . . 10
3.3 The channel model of an input-constrained DMC without feedback . . . 10
3.4 The channel model of an input-constrained adversarial channel . . . . . 11

4.1 State transition graph for the (d, k)-RLL constraint, for k < ∞ . . . . . . . 16
4.2 State transition graph for the (d, ∞)-RLL constraint . . . . . . . . . . . . 16
4.3 (a) The binary erasure channel (BEC(ϵ)) with erasure probability ϵ and

output alphabet Y = {0, ?, 1}. (b) The binary symmetric channel (BSC(p))
with crossover probability p and output alphabet Y = {0, 1}. . . . . . . . 20

4.4 Comparison of our lower bound for the (1, ∞)-RLL input-constrained
BSC(p) with bounds in [23], [89] and [28]. . . . . . . . . . . . . . . . . . . 22

4.5 Our lower bounds for the (d, ∞)-RLL input-constrained BSC(p), when
d = 1, 2, 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 Our lower bounds for the (0, k)-RLL input-constrained BSC(p), when
k = 1, 2, 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.7 Comparison of the DP lower bound for the (1, ∞)-RLL input-constrained
BEC(ϵ) with bounds in [88] and [28]. . . . . . . . . . . . . . . . . . . . . . 24

4.8 A state transition graph for the (1, ∞)-RLL input constraint. The nodes
of the graph represent the previous input and the labels on the edges
represent the current inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.9 Plots comparing our numerical lower bound with the linear lower bound
in [19] and [29] and the dual capacity-based upper bound in [28]. . . . . 33

4.10 Plot shows comparisons of the estimates of the optimal values of the
parameter a = P(X = 1|X− = 0) for the (1, ∞)-RLL input-constrained
BEC with those obtained from the sampling-based approach in [14]. We
observe that our estimates of the parameter a are less noisy than the
estimates from the sampling-based method. . . . . . . . . . . . . . . . . . 33

4.11 Plots comparing the the maximum of the lower bounds on the capacity
in Theorem 4.4.4 and in Theorem 4.3.1, with the linear lower bound of
Theorem 4.3.1, the dual capacity upper bound in [28], and the feedback
capacity upper bound in [88]. Note that the analytical bound in Theorem
4.4.4 beats the simple linear lower bound for ϵ ⪆ 0.389; a ∗ marker has
been provided on the ϵ-axis to identify this cross-over point. . . . . . . . 34

x



LIST OF FIGURES xi

5.1 Plot comparing, for d = 1, the rate lower bounds of max
(R

2 , R− 3
8

)
achieved using subcodes, from Theorems 5.5.1 and 5.5.3, with the rate
lower bound achieved using Theorem 5.5.4, with τ = 50, and the coset-
averaging lower bound of max(0, κ1 + R− 1), of [47]. The ∗ and + mark-
ers indicate the values of R beyond which the rate of the coset-averaging
bound is larger than that of our two-stage coding scheme and the cod-
ing scheme using linear subcodes, respectively; the ♢ marker shows the
value of R beyond which the rate of our two-stage coding scheme is
larger than the rates achieved using our linear or non-linear subcodes.
Here, the noiseless capacity, κ1 ≈ 0.694. . . . . . . . . . . . . . . . . . . . 49

5.2 Plot comparing, for d = 2, the rate lower bound of R/4 achieved us-
ing subcodes, from Theorem 5.5.1, the rate lower bound achieved using
Theorem 5.5.4, with τ = 50, and the coset-averaging lower bound of
max(0, κ2 + R− 1), of [47]. The ∗ and ◦markers indicate the values of R
beyond which the rate of the coset-averaging bound is larger than that of
our two-stage coding scheme and the coding scheme using linear sub-
codes, respectively; the ♢ marker shows the value of R beyond which
the rate of our two-stage coding scheme is larger than the rates achieved
using our linear subcodes. Here, the noiseless capacity, κ2 ≈ 0.552. . . . 50

5.3 Plot comparing, for d = 1, the rate lower bound of approximately R̂m −
3
8 , from Theorem 5.5.3, with the numerical lower bound obtained by
Monte-Carlo simulation, using (5.11). . . . . . . . . . . . . . . . . . . . . 61

6.1 A comparison between the upper bound of Theorem 6.2.2 and achiev-
able rates of R/2 and max

(
0, R− 3

8

)
, from Theorems 5.5.1 and 5.5.2, re-

spectively, when d = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 A comparison between the upper bound of Theorem 6.2.2 and the achiev-

able rates of [63] and [14] (or equivalently, Algorithm 1 in Chapter 4). For
large ϵ, the upper bound of Theorem 6.2.2, under sub-optimal decoding,
lies below the numerically-computed achievable rates in [14]. . . . . . . 74

7.1 State transition graph for sequences in the set S2. . . . . . . . . . . . . . . 102

8.1 The binary erasure channel with erasure probability ϵ, with input alpha-
bet X = {0, 1} and output alphabet Y = {0, ?, 1}. . . . . . . . . . . . . . 121

8.2 State transition graph for the (d, ∞)-RLL constraint . . . . . . . . . . . . 122
8.3 A sampleQ-graph. The edge labels represent outputs. The edge labelled

by 0/? should be viewed as two edges, one labelled by 0 and another by
?, merged into one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.4 Plots of the feedback capacities for d = 1, 2, 3. . . . . . . . . . . . . . . . . 131
8.5 Plots (a) and (b) show comparisons of the feedback capacities of the

(1, ∞)- and (2, ∞)-RLL input-constrained BEC with dual capacity-based
upper bounds on the capacity without feedback, from [28]. . . . . . . . . 132

8.6 The set of labellings, L0, . . . ,Ld, used in the coding scheme. . . . . . . . 133



LIST OF FIGURES xii

8.7 Figure shows the finite-state machine (FSM) that represents transitions
between the labellings, with the edges labelled by outputs. When the
encoder is in state Qi, for i ∈ {0, 1, . . . , d}, the labelling used is Li, and
when the encoder is in state Q̂i, for i ∈ {0, 1, . . . , d − 1}, the labelling
used is L̂. The edges labelled by 0/? should be viewed as two edges
merged into one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.8 Figure shows an illustration of a successful transmission of the second
kind, when X1 = Y1 = 1, and when the encoder then transmits d addi-
tional zeros. Note that the size of the set of possible messages reduces. . 136

8.9 The figure shows the setting when two consecutive erasures are received
(Y1 = Y2 =?), followed by the successful reception of X3 = 1. So long
as erasures are received, the set of possible messages is retained as such,
while the labellings cycle through L0 to Ld. Upon the successful recep-
tion of X3, and after the transmission of d 0s, the labelling is changed to
L0. However, since the set of possible messages is now a singleton, the
transmission ends with the decoder declaring the correct identity of the
message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.1 State transition graph for sequences in the set S2. . . . . . . . . . . . . . . 159



Keywords

Input-constrained channels, finite-state channels, capacity computa-
tion, coding schemes

xiii



Notation

Sets

R The set of real numbers

N The set of natural numbers 1, 2, . . .

[n] The set {1, 2, . . . , n}, for n ∈N

[a : b] The set {a, a + 1, . . . , b}, for a, b ∈N, with a ≤ b

F2 Finite field of 2 elements {0, 1}

F2[x1, . . . , xm] Ring of polynomials over F2 in m variables

S State space of channel with memory

X Channel input alphabet

Y Channel output alphabet

Sequences

an = O(bn) ∃c > 0 such that an < c · bn for all sufficiently large n

an = o(bn) an/bn → 0 as n→ ∞

xiv



Notation xv

Vectors and matrices

x, y, u, v Vectors

xN Vector x = (x1, . . . , xN) of length N

xj
i The vector (xi, . . . , xj), for i ≤ j, given a vector x

x · y Dot product ∑n
i=1 xiyi of vectors x and y

0N and 1N The length-N vectors (0, . . . , 0) and (1, . . . , 1), respectively

xy or (x | y) Concatenation of vectors x and y

supp(x) Support of x, or the set of indices corresponding to nonzero

entries of x

w(x) Hamming weight, or number of ones, in x

wz(x) Number of ones in x in the coordinates in supp(x)

e(n)i or ei Standard basis vector of length n, with a 1 at coordinate i,

and 0s elsewhere

Bm(i) or B(i) Length-m binary representation of i, for 0 ≤ i ≤ 2m − 1

M, G, . . . Matrices

M(i) The ith row of matrix M

M[j] The jth column of matrix M

Random Variables and Events

U, V, X, Y, Z, . . . Random variables

Xn or X Random vectors

P(x) and P(y|x) The probabilities PX(x) and PY|X(y|x), respectively, given

random variables X and Y

E[Z] Expectation of the random variable Z

H(X) or H(PX) Entropy of the random variable X with distribution PX

H(X|Y) Conditional entropy of X given Y

IP(X; Y) or I(X; Y) Mutual information between X and Y when X ∼ P

X ∼ N (µ, σ2) X is a Gaussian random variable with mean µ and variance

σ2



Notation xvi

Functions, Expressions, and Operations

1A Indicator function given set A, which equals 1 at a vector x

if x ∈ A and equals 0, otherwise

ln and log2 Logarithms to the base e and 2, respectively

hb(p) Binary entropy function that equals −p log2 p − (1 −

p) log2(1− p), for p ∈ [0, 1]

exp2(z) The value 2z, for z ∈ R

⌊r⌋ and ⌈r⌉ The floor and ceiling functions, respectively

( m
≤r) The summation

r
∑

i=0
(m

i )

p ≡ r (mod n)

or

r = mod(p, n)

If it holds that p = qn + r, for some integer q, for integers p,

r, and n, with n > 0 and 1 ≤ r ≤ n

α Equals 1− α, for α ∈ R



Chapter 1

A Layman’s Introduction

Down to the dark, to the utter dark, where the blind white sea-snakes are.

There is no sound, no echo of sound, in the deserts of the deep,

Or the great grey level plains of ooze where the shell-burred cables creep.

Rudyard Kipling, The Deep-Sea Cables, 1896.

On 16 August 1858, James Buchanan, the 15th president of the United States, con-

veyed his fervent hope, to Queen Victoria of the United Kingdom, that the “instrument

destined by Divine Providence” would prove to be a bond of “perpetual peace and

friendship” between the two nations, and help “diffuse religion, civilization, liberty

and law throughout the world”. Interestingly, this message was transmitted through

the very instrument spoken of, which was billed in a popular lithograph as “The Eighth

Wonder of the World”. The instrument was the great transatlantic telegraph cable [1]—

a monstrosity of two and a half thousand tons of copper and iron over two thousand

miles of ocean—connecting Europe to North America. Very soon, it was discovered

that sustained, reliable communication through the cable was next to impossible, since

the noise in the telegraph lines corrupted almost all of the message that was intended

to be sent. Three weeks later, the cable lay destroyed at the bottom of the ocean, owing

to efforts by Wildman Whitehouse, an amateur electrical experimenter, to boost signal

quality, by blasting shocks of 2000 volts through the cable.

1
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Through the ages, humans have tried a variety of techniques to get information

across as large a landscape, as quickly, and at the same time, as reliably, as possible.

Very early attempts at this included beacon fires in China and signal drums in parts of

Africa, which for obvious reasons, could transmit only very select messages, any de-

viation from which could easily be misinterpreted. Yet another system was the “Pony

Express”, an American mail-service of the mid-1800s, stretching from Missouri to Cal-

ifornia, which involved a relay of horse riders, and which was still in use at around the

time of the transatlantic cable. Then came the electrical telegraph, the failed deep-sea

cable, Graham Bell’s telephone and telephone lines. All through these times, White-

house’s naı̈ve methods were in play, and there was little understanding of the funda-

mental tradeoff between the rate, or the amount of information that can be transmitted

in a given time, and the reliability of communication. This was changed in 1948, with

Claude Shannon’s seminal work on information theory and the fundamental limits of

reliable communication, which provided a precise limiting constant for any channel

(or medium of communication), called its capacity, rates beyond which would lead

to unreliable information transfer, and below which it was possible to communicate

extremely reliably, so long as the number of times the channel was used, escaped to

infinity. The decades thereafter saw a tremendous amount of work being done in the

construction of explicit coding schemes, or communication strategies, whose rates of

reliable information transfer came very close to the capacity of several channels. Such

codes form the backbone of cellular, satellite, and deep-space communications today.

The digital age after Shannon’s work also saw rapid strides being made in storage

technology, with ever-increasing demands for reliable storage of high-definition im-

ages and videos. Shannon’s theory applies to storage media too, and there is hence an

intrinsic tradeoff between the amount of data that can be stored on a given device, and

the reliability of storage. Furthermore, the storage of data on magnetic media such as

magnetic tapes, disk drives, and flash drives could lead to some data sequences being

more prone to error than others. The technique of constrained coding was thus applied
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to help alleviate such errors by only allowing the storage of (relatively error-free) se-

quences that obey a hard constraint. As explained in later chapters, constrained coding

now has applications in wireless communication too, especially in energy-harvesting

scenarios, where the receiver’s battery is charged using energy from the transmitted

signal.

In this thesis, we are broadly interested in the fundamental limits of constrained

coding in the presence of noise. We shall also work towards explicitly designing cod-

ing schemes whose rates are comparable with estimates of the capacities of such input-

constrained channels. For much of the thesis, we shall consider the setting where the

noise is memoryless, in that the noise that affects a particular symbol in a transmitted

word is independent of that which affects the other symbols. In the last part of the

thesis, we shall also take a look at adversarial noise models, where there is a bound on

the amount of noise that can corrupt a given word. The next chapter discusses these

noise models in greater detail, and also puts down some questions about the transmis-

sion (or storage) of information in such settings. These questions will be refined and

made more precise in later chapters, wherein we shall also attempt to address them in

a rigorous manner.



Chapter 2

A Technical Introduction

In this chapter, we provide a summary of our technical contributions and lay out the

organization of this thesis.

2.1 Summary of Our Contributions

Our work is chiefly concerned with the explicit determination of bounds on the ca-

pacities of, and the design of good coding schemes for, discrete memoryless channels

(DMCs) with input constraints.

At first, we focus on deriving information-theoretic lower bounds on the capacities

of input-constrained DMCs, via achievable rates of special random coding schemes. To

this end, we derive lower bounds on the capacities of input-driven finite-state chan-

nels (FSCs), a broad class of channels that includes most input-constrained DMCs.

Our approach is to restrict the distribution of inputs to be Markov, and employ sim-

ple information-theoretic inequalities to come up with a single-letter lower bound. We

show that this bound unifies known lower bounds in the literature, and extends them

to input-driven FSCs. We also explicitly evaluate our lower bound for runlength lim-

ited (RLL) input-constrained binary symmetric and binary erasure channels (BSC and

BEC, respectively). We then consider the special case of the binary erasure channel

(BEC) with a no-consecutive-ones input constraint. Once again, we restrict our input

4
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distribution to be Markov, and present a numerical stochastic approximation-based al-

gorithm for numerically computing a lower bound on the capacity. We observe that

our numerical results are close to known upper bounds on the capacity of the channel,

and also align with numerical sampling-based bounds in the literature. We also derive

an analytical single-parameter optimization problem as a lower bound on the capac-

ity, and demonstrate that this new bound is better than the single-letter lower bound

derived earlier, specialized to this channel.

Next, our objective is to use our knowledge of estimates of the capacities, to design

explicit coding schemes, using subcodes of Reed-Muller (RM) codes, over binary-input

memoryless symmetric (BMS) channels (a class of DMCs) with a specific RLL input

constraint. This constraint that we work with is the (d, ∞)-RLL constraint, which man-

dates that any pair of successive 1s be separated by at least d 0s. We first demonstrate

a simple construction, using linear constrained subcodes of RM codes, and analyti-

cally compute its rate. For the special case when d = 1, we prove the existence of

coding schemes using potentially non-linear subcodes that achieves larger rates than

those achieved by our previous scheme. Finally, we present a new two-stage (or con-

catenated) constrained coding scheme, again using RM codes, which outperforms the

coding schemes constructed earlier, in terms of rate.

Building on our work on designing coding schemes using RM subcodes, we then

explore upper bounds on the rates of constrained subcodes of RM codes, where the

constraint is once again the (d, ∞)-RLL constraint. We first show that our previous

construction of a linear coding scheme is essentially rate-optimal, by deriving an up-

per bound on the rates of linear (d, ∞)-RLL subcodes of RM codes of rate R. We further

derive upper bounds on the rates of (1, ∞)-RLL subcodes, not necessarily linear, of a

certain canonical sequence of RM codes of rate R, using estimates of the weight distri-

bution of RM codes. We then shift our attention to settings where the coordinates of

the RM code are not ordered according to the standard ordering, and derive rate upper

bounds for linear (d, ∞)-RLL subcodes in these cases as well.

Next, with the aim of generalizing our approach of using subcodes of RM codes
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over input-constrained BMS channels to arbitrary constraints, we consider the problem

of counting (arbitrarily-)constrained codewords in general linear codes. Using a simple

identity from the Fourier analysis of Boolean functions, we transform our counting

problem into a question about the structure of the dual code. We illustrate the utility

of our method in providing explicit values or numerical algorithms for our counting

problem, from the somewhat surprising observation that for different constraints of

interest, the Fourier transform of the indicator function of the constraint is efficiently

computable.

Since we would have by then acquired some knowledge about good lower bounds

(via explicit constructions or existential arguments) on the capacities of input-constrained

DMCs, we then turn to the problem of deriving upper bounds on the capacities. As

part of our first approach, we derive upper bounds on the capacity of the BEC with the

(d, ∞)-RLL input constraint, via the feedback capacity of the channel. We demonstrate

a simple, labelling-based, zero-error feedback coding scheme, which we prove to be

feedback capacity-achieving, and, as a by-product, obtain an explicit characterization

of the feedback capacity. Moreover, we show numerically that there is a gap between

the feedback capacities and dual capacity-based upper bounds on the non-feedback

capacities of the (d, ∞)-RLL input constrained BEC, at least for d = 1, 2.

In our second approach, which is also the final contribution of this thesis, we take

up the study of codes over input-constrained adversarial bit-flip or erasure channels,

and consider the setting where we would like to recover the input codeword with zero

error. By standard arguments in coding theory, the problem of designing error-resilient

codes over such a channel is equivalent to the design of constrained codes with a large

minimum Hamming distance. We present numerical upper bounds on the sizes of

constrained codes with a prescribed minimum distance, by extending Delsarte’s linear

program (LP) to the setting of constrained codes. We also describe an equivalent LP,

with fewer variables and LP constraints, obtained by symmetrizing our LP. We observe

that for different constraints of interest, our upper bounds beat the generalized sphere

packing upper bounds, which are the state-of-the-art.
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2.2 Organization of This Thesis

We begin the thesis with a detailed description of the channel models we shall work

with, in Chapter 3; we recommend that the reader reads this chapter first before mov-

ing on to the others. Chapters 4–9 in this thesis contain our main technical contribu-

tions. Each such chapter (with the exception of Chapter 6, which draws on material in

Chapter 5) can be read independent of the other chapters. In order to make each such

chapter self-sufficient, we have also provided a detailed introduction to the problem(s)

considered in the chapter, at its beginning, and an outline of interesting questions for

future work, at its end. Also, whenever appropriate, individual chapters have their

own literature surveys. Moreover, in order to avoid repetition in the technical material

in this thesis, we have collected oft-used notation and presented them as tables in the

section on notation at the start of this thesis (pp. xiv–xvi). The thesis is concluded in

Chapter 10, where some interesting open questions are discussed.

Chapter 4 contains material on information-theoretic lower bounds on capacities.

Chapters 5 and Chapter 6 (to be read together), respectively, describe explicit con-

strained code constructions using RM codes and upper bounds on the rates of con-

strained subcodes of RM codes. Chapter 7 discusses work on a Fourier-analytic per-

spective on counting constrained codewords in binary linear codes. The material on

the feedback capacity of the (d, ∞)-RLL input-constrained BEC is contained in Chapter

8. Finally, Chapter 9 contains material on good upper bounds on the sizes of error-

resilient constrained codes, via a version of Delsarte’s linear program.



Chapter 3

Channel Models

In this chapter, we define the input-constrained channel models that are the objects of

concern in this thesis. Later chapters define generalizations of these channels, but our

chief results pertain to the channels defined here.

A large part of this thesis focuses on input-constrained discrete memoryless chan-

nels. A discrete memoryless channel (DMC) is defined by a triple (X , W,Y), where X

and Y are the channel input and output alphabets, respectively, and at any time t ≥ 1,

the channel produces (stochastically) an output Yt ∈ Y from a (random) input Xt ∈ X

according to the channel law

PYt|Xt(yt | xt) = W(yt | xt).

We assume that the input alphabet X is finite (and is often the binary alphabet {0, 1}),

and we allow the output alphabet Y to be potentially uncountably infinite (in this

thesis, however, we shall primarily be concerned with situations where |Y| < ∞). We

let W(·|x) be a density function with respect to the counting measure, if Y is discrete,

and with respect to the Lebesgue measure, if Y = R and the output distribution is

continuous. The “memoryless” nature of the channel stems from the fact that if the

channel is used n times, with Yn denoting the output sequence for an input sequence

8
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PY|X

m̂ynxn

DecoderEncoder DMCm ∈
[
2nR
]

Figure 3.1: The channel model of a DMC without feedback

Xn, we have that in the absence of feedback,

PYn|Xn(yn | xn) =
n

∏
t=1

W(yi | xi). (3.1)

Often, we shall refer to a DMC by just its transition probability function W. The joint

distribution of inputs and outputs until time n can hence be written as

PXn,Yn(xn, yn) =
n

∏
t=1

P(xt | xt−1, yt−1) ·W(yt | xt). (3.2)

The channel model with a DMC that we consider, hence, takes a message m, which

belongs to a setM = {1, . . . , 2nR} of 2nR messages, for some R ∈ [0, 1]. The message is

then mapped by an encoder to the input sequence xn, of blocklength n, and is passed

through the DMC W, which in turn produces the output sequence yn, according to

(3.1). The output sequence is handed over to a suitable decoder, which produces an

estimate, m̂, of the message m. Figure 3.1 shows the channel model. Note that in this

case, since the encoder does not have access to the outputs received by the decoder at

any time t, the conditioning on yt−1 within the product in (3.2) can be removed.

In this thesis, we consider DMCs whose inputs obey some additional (hard) con-

straints. We refer the reader to [2] for an extensive treatment of constrained systems

and coding in the presence of constraints. Suppose that the constraint is represented by

a set An ⊆ X n of constrained sequences, for every blocklength n ≥ 1. Then, an input-

constrained DMC without feedback is described by the setup defined above, with the

added restriction that the inputs xn ∈ An, for all blocklengths n. The channel model

with a constrained encoder is shown in Figure 3.2.
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PY|X

m̂ynxn ∈ An
Decoder

Const.

Encoder

DMCm ∈
[
2nR
]

Figure 3.2: The channel model of an input-constrained DMC without feedback

PY|X

m̂yixi
Decoder

Const.

Encoder

DMC

yi−1 yi
Unit Delay

m ∈
[
2nR
]

Figure 3.3: The channel model of an input-constrained DMC without feedback

Next, we consider the setting where the encoder has access to additional informa-

tion from the decoder, in the form of feedback through a noiseless link. Again, in this

thesis, our interest is in situations where the encoder produces only sequences that lie

in some setAn ⊆ X n of constrained sequences, for all n ≥ 1. In the channel model with

feedback, the constrained encoder at time i has, in addition to the message, access to

noiseless feedback in the form of the outputs, yi−1, from the decoder. It then produces

a binary input symbol xi ∈ X , as a function of the message, m, and the outputs, yi−1,

in such a manner that the input sequence xn is constrained. The inputs xn are passed

to a DMC, and decoded to an estimate m̂, as before. The communication setting of

an input-constrained memoryless channel with causal, noiseless feedback is shown in

Figure 3.3.

Finally, we also consider “adversarial” (or worst-case noise) channel models, with-

out feedback, wherein there is an upper bound on the number of symbols of the con-

strained input sequence (as a function of its blocklength) that the channel can corrupt.

Here, we assume that the number of corrupted symbols, e = e(n) is such that e
n ≤ p,

for some p ∈ (0, 1). Note the contrast with the setting of the DMC wherein the errors

are introduced stochastically, and for a given blocklength n, there is positive proba-

bility that all symbols in xn are corrupted. Our interest is in the setting where the



Chapter 3. Channel Models 11

xn Zero-

Error

Decoder

yn m̂m ∈
[
2nR
]

Const.

Encoder

Adversarial

Error Channel

e
n ≤ p ∈ (0, 1)

Figure 3.4: The channel model of an input-constrained adversarial channel

message that is sent, is recovered by the decoder, with zero error. Figure 3.4 shows this

adversarial channel model.

Several questions, of interest to theorists and practitioners alike, can be framed with

these models in place:

1. What are the fundamental limits of communication over input-constrained DMCs,

with and without feedback? In particular, what can we say about the largest rate

of reliable information transfer over such channels?

2. Are there explicit coding schemes achieving good rates over input-constrained

DMCs, with and without feedback, which also guarantee reliable recovery of the

message transmitted?

3. Can we come up with a recipe for determining the “goodness” of well-known

codes for transmission over input-constrained DMCs without feedback?

4. Can we characterize the resilience of arbitrary constrained coding schemes to

adversarial noise?

This dissertation is an attempt to contribute to the body of knowledge on error-

correcting constrained coding, via progress made on these questions.



Chapter 4

Bounds on the Capacities of

Input-Constrained Channels

”Begin at the beginning,” the King said, very gravely, ”and go on till you come to

the end: then stop.”

Lewis Caroll, Alice’s Adventures in Wonderland, 1865

4.1 Introduction

In this chapter, we try to understand the fundamental limits of communication over

input-constrained DMCs; in particular we shall derive estimates of the capacities of

such channels. We shall, however, begin by defining a much broader class of chan-

nel models—the so-called “channels with memory” or finite-state channels (FSCs)—

of which a large number of input-constrained DMCs are a part. FSCs are common

mathematical models for noisy magneto-optical recording media (see, for example, [2]

or [3]) and intersymbol interference and fading in wireless communications (see [4]

and [5] for channel models in wireless communications). We briefly survey some well-

known facts about the capacities of such channels. We then define the subclass of

“input-driven” channels—the object of interest in this chapter—which includes many

input-constrained DMCs. We derive some simple lower bounds on the capacities

12
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of input-driven channels, using specific input distributions. These bounds are well-

known to information theorists, and we attempt to present them in a unified manner.

Next, we improve on the lower bounds for a very special case, which is that of the

input-constrained binary erasure channel, whose binary inputs are required to have

no consecutive ones. We present an iterative two-timescale stochastic approximation

algorithm that numerically computes a lower bound, and we also provide an analytical

improvement over the simple bound derived earlier.

4.2 Channel Model and Literature Survey

In this section, we define channels with memory or finite-state channels (FSCs), and

review some well-known results pertaining to their capacities. For every time instant

t ≥ 1, an FSC takes as input xt ∈ X , and outputs yt ∈ Y , with the channel memory

encapsulated in a “state” of the channel at time t, called st, which takes values in a

state alphabet S . We assume that the input and state alphabets X ,S are finite, and we

allow the output alphabet Y to be potentially uncountably infinite. We fix an initial

state s0 ∈ S , which is made known to both the encoder and the decoder, and define at

each time t ≥ 1, the (causal) FSC channel law:

P(st, yt|xt, st−1, yt−1) = P(st, yt|xt, st−1).

We assume further that s0 is known to both the encoder and the decoder. The joint

distribution of inputs, outputs, and states of the FSC until time n, given the initial state

s0, hence can be written as

P(xn, yn, sn | s0) =
n

∏
t=1

P(xt, yt, st | xt−1, yt−1, st−1, s0)

=
n

∏
t=1

P(xt | xt−1, yt−1, st−1
0 ) · P(yt, st | xt, st−1).
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Furthermore, for an FSC without feedback, since the encoder does not have access to the

outputs received by the decoder at any time t, we have

P(xn, yn, sn | s0) =
n

∏
t=1

P(xt | xt−1, st−1
0 ) · P(yt, st | xt, st−1).

The channel model of an FSC without feedback is similar to what is shown in Figure

3.1 in Chapter 3, with the DMC replaced by an FSC. Observe that if the state space S

were a singleton, we have that the channel is a DMC, in that the channel law obeys

P(yn | xn) = ∏n
t=1 P(yt | xt), with the state at all times being equal to s0. We then

define the subclass of input-driven FSCs, below:

Definition 1. An input-driven FSC is a channel such that there exists a time-invariant func-

tion, f : S × X → S , with st = f (st−1, xt), for all time instants t ≥ 1.

Again, the channel model for an input-driven FSC can be derived from Figure 3.1

by replacing the DMC with an input-driven FSC. Some well-known examples of input-

driven FSCs are given below:

Example 1 (ISI channel). An intersymbol interference (or ISI) channel is such that for some

positive integer M > 0, for all time instants t ≥ 1,

Yt =
M

∑
k=0

hk · Xt−k + Zt,

where (h0, . . . , hM) are channel tap coefficients that are fixed (non-random) and known to the

encoder and decoder, and the noise process (Zt)t≥1 is typically independent of the input process

(Xt)t≥1, with Zt ∈ Z , for all t ≥ 1. Here, we assume that (X−M+1, . . . , X0) are fixed to be

some (x⋆−M+1, . . . , x⋆0) ∈ XM.

The state of the channel at time t can be taken to be st = (xt, xt−1, . . . , xt−M+1).

The next example shows that several input-constrained DMCs of Chapter 3 can be

viewed as input-driven channels. We again refer the reader to [2] for definitions related

to constrained systems.
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Example 2 (DMCs with input constraints of finite memory). Consider a constrained sys-

tem S with finite memory (equivalently, a finite-type constrained system), and let G = G(S)

denote a deterministic presentation of the constraint, with vertex set V (note that |V| < ∞),

edge set E and labelling function L : E → X .

An input-constrained DMC W (see Chapter 3), with input constraint S and channel state

alphabet V obeys

P(yt, st | xt, st−1) = ϕ(st; (xt, st−1)) ·W(yt | xt),

where the probability on the left is undefined if there exists no outgoing edge labelled by xt from

st−1, and if otherwise, we define ϕ(st; (xt, st−1)) to be 1 if the edge st−1
xt−→ st is in E , and

equals 0, otherwise. Since the state st is a deterministic time-invariant function of (st−1, xt),

this class of channels is a subclass of input-driven channels.

We now provide the definition of a class of constraints that we shall frequently

work with: the class of (d, k)-runlength limited (RLL) constraints. We recall that for a

given binary sequence x, a run of 0s (resp. a run of 1s) is a contiguous subsequence

(xi, xi+1, . . . , xj), with i ≤ j, all of whose symbols are 0 (resp. 1).

Definition 2. A binary sequence x = (x1, x2, . . .) ∈ {0, 1}∗ is said to obey the (d, k)-RLL

constraint, (for 0 ≤ d < k ≤ ∞) if each run of 0s in x has length at most k, and any pair of

successive 1s is separated by at least d 0s.

It is easily verified that (d, k)-RLL input-constrained DMCs are input-driven. In-

deed, this fact can be seen to be true, by taking the channel state space S to be {0, 1, 2, . . . , d}

if k = ∞, and {0, 1, 2, . . . , k} if k < ∞. The state transitions are shown in the edge-

labelled directed graphs in Figures 4.1 and 4.2: an edge s x−→ s′ represents the transi-

tion s′ = f (s, x).

We now turn to questions regarding the capacities of FSCs in general, and input-

driven FSCs in particular. Loosely speaking, the capacity of a channel (with or without

memory) is the largest rate of information transmission over the channel, such that

the probability of incorrect decoding (using a suitably defined decoder) at the receiver,
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0 1 d k
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1

1

1
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k− 1
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Figure 4.1: State transition graph for the (d, k)-RLL constraint, for k < ∞

. . .
0 1 d− 1 d

0 0 0 0

1

1

Figure 4.2: State transition graph for the (d, ∞)-RLL constraint

vanishes as the number of channel uses goes to infinity. We refer the reader to Chapters

4 and 5 of [6] and Chapter 7 in [7] for formal definitions of the capacities of channels

(DMCs and FSCs) and other information-theoretic preliminaries. For FSCs as defined

above, with the initial state s0 fixed and known to both the encoder and decoder, the

expression for the capacity is well-known to be the limit of the maximum mutual in-

formation rate over the channel:

Theorem 4.2.1 ( [6], Ch. 4.6). The capacity of an FSC with a fixed, known, initial state s0 is

given by

C = lim
n→∞

max
{P(xn|s0)}

1
n

IP(Xn; Yn|s0).

Remark 4.2.2. The limit above exists by superadditivity (or subadditivity) arguments (see

Theorem 4.6.1 in [6]). While the assumption that s0 known to both the encoder and decoder

can be removed through a suitable notion of channel indecomposability [6, (4.6.26)], we retain

the assumption as it is realistic in the context of input-constrained DMCs, which is the main

application of interest to us.

For the special case of input-constrained memoryless channels, the maximization above is

performed over all distributions supported on input sequences that respect the constraint.
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For the special case that the FSC is in fact an unconstrained DMC, the following

theorem holds:

Theorem 4.2.3 (Part II of [8], Theorem 7.7.1 in [7]). The capacity of a DMC is

CDMC = max
{P(x)}

IP(X; Y).

In what follows, we suppress the subscript ‘P’ in the mutual information expres-

sions above. Observe that Shannon’s formula for the capacity of an unconstrained

DMC is given by an elegant, single-letter expression, but the capacity of FSCs, with

the exception of special cases, is characterized only by a hard-to-compute multi-letter

expression. Moreover, there exist well-known alternating maximization procedures

[9, 10] for evaluating the capacities of DMCs, in contrast to the case of FSCs, where

optimization procedures for evaluating the maximum mutual information rates apply

to only select structured input distributions [11].

Since our objective in this chapter is to attempt to provide good approximations to

the capacity in Theorem 4.2.1, for select classes of channels, it is useful to understand

if the maximization domain in the expression for the capacity can be simplified, for at

least select classes of channels. From Lemma 1 in [12], we note that at least for input-

constrained DMCs, where the input constraint is of finite memory and is irreducible,

besides (see [2]), the maximization can be carried out over the smaller class of station-

ary probability distributions over inputs. In fact, a more general result in this vein can

be found in the work [13] by Feinstein, where it was shown that for general “finite-

memory” channels with discrete inputs, of which the ISI channels and finite-memory

input-constrained DMCs form a part, the capacity C is achieved by stationary, ergodic

input processes. This is a useful observation to keep in mind when we attempt to de-

rive lower bounds on the capacity, by restricting the class of input distributions. We

mention that even when the inputs are restricted to be stationary and Markovian, the

computation of the mutual information rate reduces to the computation of the entropy

rate of a Hidden Markov process, which is a well-known hard problem.

In the context of deriving bounds on the capacity expression in 4.2.1, we mention
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that there exists extensive previous literature that attempts to address the question of

capacity computation. Existing work on lower bounding the capacity of FSCs includes

the simulation-based approaches in [14–17]. In these approaches, the key insight is

that the mutual information term in 4.2.1 is the expected value of a quantity, which,

for select input distributions, can be estimated efficiently by Monte-Carlo evaluation.

The technique makes use of the recursive algorithm for computing posterior probabil-

ities in [18], to efficiently compute the posterior probabilities of channel states given

long observed output sequences. Numerical methods of estimating lower bounds on

the capacity also include the generalized Blahut-Arimoto algorithm developed in [11],

and the stochastic approximation algorithm proposed in [19] (see also [20]). Analyt-

ical lower bounds were first derived by Zehavi and Wolf [21] for binary symmetric

channels with a (d, k)-runlength-limited (RLL) constraint — see Definition 2 — at the

input. Later works gave capacity lower bounds for input-constrained binary sym-

metric and binary erasure channels in the asymptotic (very low or very high noise)

regimes [20], [22], [23].

4.3 Simple Lower Bounds

In this section, we derive simple lower bounds on the capacity expression in Theorem

4.2.1. Our lower bounds, like many of the bounds previously mentioned, are based

on restricting the class of input distributions P to first-order Markov distributions sup-

ported on the channel state space. We then apply the lower bounding technique to the

class of input-constrained binary symmetric channels (BSCs) and binary erasure chan-

nels (BECs). We consider the (d, k)-RLL input-constrained BSC and BEC, and provide

explicit lower bounds for each of these channels. The motivation for using Markov

input distributions to calculate lower bounds for such channels stems from the work

in [24], which demonstrated that for general indecomposable FSCs, of which the (d, k)-

RLL input-constrained DMCs form a part, the capacity can be approached arbitrarily

closely using Markov input distributions of increasing order. Our techniques recover
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the lower bounds given in [21] (see also Lemma 2 of [12]), for the (d, k)-RLL input-

constrained BSC, for k < ∞. For the (1, ∞)-RLL input-constrained BSC and BEC,

the analytical lower bounds thus found compare favourably with asymptotic lower

bounds given in [20], [22] (we mention that our lower bounds for the input-constrained

BEC have been stated in more generality, for all finite-type input constrained BECs, in

Theorem 2.2 of [20]).

Our lower bound is presented below:

Theorem 4.3.1. The capacity of an input-driven FSC with fixed, known, initial state is bounded

below as:

C ≥ sup
{Q(x|s)}∈P

IQ(X; Y|S)

where P is the set of distributions {Q(x | s) : x ∈ X , s ∈ S} such that the Markov chain on

S induced by Q has an aperiodic, closed, communicating class containing s0.

Proof. We have that for a fixed s0 known to both the encoder and decoder, and for a

fixed distribution P(xn | s0),

IP(Xn; Yn | s0) =
n

∑
t=1

I(Xt; Yn | Xt−1, s0)

≥
n

∑
t=1

I(Xt; Yt | Xt−1, s0). (4.1)

Hence, via Theorem 4.2.1, we have

C = lim
n→∞

max
{P(xt|xt−1,s0)}n

t=1

1
n

I(Xn; Yn | s0)

≥ lim
n→∞

max
{P(xt|xt−1,s0)}n

t=1

1
n

n

∑
t=1

I(Xt; Yt | Xt−1, s0)

= sup
{P(xt|xt−1)}t≥1

lim inf
n→∞

1
n

n

∑
t=1

I(Xt; Yt | Xt−1),

the last equality above following by the arguments in Lemma 4 of [25], the conditioning
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on s0 being suppressed in the notation. Finally, we can replace the supremum over

{P(xt|xt−1)}t≥1 by a supremum over input distributions of the form {Q(xt|st−1)}t≥1,

where Q ∈ P (see the statement of the theorem), at the expense of another inequality.

Hence,

C ≥ sup
{Q(xt|st−1)}t≥1

lim inf
n→∞

1
n

n

∑
t=1

I(Xt; Yt | Xt−1)

= sup
{Q(xt|st−1)}t≥1

lim inf
n→∞

1
n

n

∑
t=1

I(Xt; Yt | St−1)

= sup
{Q(x|s)∈P}

IQ(X; Y|S),

where the first equality above follows since given s0, Xt−1 determines St−1 (as the

channel is input-driven) and since Xt (and hence Yt) depends on Xt−1 only through

St−1, by the choice of input distributions being maximized over.

We then apply Theorem 4.3.1 to runlength-limited input-constrained DMCs; in par-

ticular, input-constrained binary symmetric channels (BSCs) and binary erasure chan-

nels (BECs), shown in Figures 4.3b and 4.3a, respectively.

ϵ
ϵ

1− ϵ

1− ϵ

0

1

0
?
1

(a)

p
p

1− p

1− p

0

1

0

1

(b)

Figure 4.3: (a) The binary erasure channel (BEC(ϵ)) with erasure probability ϵ and out-

put alphabet Y = {0, ?, 1}. (b) The binary symmetric channel (BSC(p)) with crossover

probability p and output alphabet Y = {0, 1}.

We obtain the following lower bounds:

• The capacity of the (d, ∞)-RLL input-constrained BSC(p) satisfies

C ≥ max
a∈[0,1]

hb(ap + ā p̄)− hb(p)
ad + 1

.
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This result holds for all p ∈ [0, 1], and, for d = 1, numerical evaluations indicate

that our bound is close to the asymptotic bounds of [22] (as p → 0), and of [23]

(as p→ 0.5).

• The capacity of the (d, k)-RLL input-constrained BSC(p) obeys

C ≥ max
ad,...,ak−1

k−1
∑

i=d
(hb(ai p + āi p̄)− hb(p))

i−1
∏
j=d

(1− aj)

d + 1 +
k−1
∑

i=d

i
∏
j=d

(1− aj)

,

where ad, . . . , ak−1 ∈ [0, 1]. These lower bounds hold for arbitrary 0 ≤ d < k < ∞.

We mention also that our lower bounds in this setting, which were also derived

in [12], were shown therein to be better than the lower bounds obtained via an ap-

plication of the so-called “Mrs. Gerber’s lemma” [26] to lower bound the entropy

rate of the output sequences from a BSC, when an arbitrary stationary source is

used as the input to the channel. An extension of “Mrs. Gerber’s lemma” to

arbitrary binary-input symmetric channels was carried out in [27].

• For 0 ≤ d < k ≤ ∞, the capacity of the (d, k)-RLL input-constrained BEC(ϵ) sat-

isfies C ≥ κd,k · ϵ̄, where κd,k is the noiseless capacity of the (d, k)-RLL constraint.

In particular, when d = 0, the bound becomes tight as k→ ∞.

Remark 4.3.2. For the input-constrained channels described above, it can easily be checked

that in the zero noise regime (when p = 0 in the BSC and ϵ = 0 in the BEC), the lower bound

equals the noiseless capacity (see [2]) of the constraint. Indeed, by substituting X = Y in our

lower bound expression, we obtain that at zero noise, C ≥ sup{Q(x|s)∈P} H(X | S) = κ, where

κ is the noiseless capacity of the constraint (see [2]), and the equality holds by Theorem 3.23

in [2].

For d = 1, Figure 4.4 shows plots of our lower bound, alongside the lower bound

of Ordentlich [23]. Upper bounds on the capacity in the form of the feedback capacity

of the (1, ∞)-RLL input-constrained BSC(p) [89], and the dual capacity upper bound of



Chapter 4. Bounds on the Capacities of Input-Constrained Channels 22

Figure 4.4: Comparison of our lower bound for the (1, ∞)-RLL input-constrained

BSC(p) with bounds in [23], [89] and [28].

Thangaraj [28] are also shown. Numerical evaluations indicate that our lower bound

is close to the asymptotic bounds in [22] as p → 0, and in [23] as p → 0.5. Plots of

the lower bound for d = 1, 2, 3, are given in Figure 4.5, with the unconstrained (d = 0)

capacity also indicated.

Figure 4.6 shows plots of the lower bound for the (0, k)-RLL input-constrained

BSC(p), for k = 1, 2, 3, alongside the capacity of the unconstrained (k → ∞) BSC(p).

We reiterate here that our lower bound is exactly equal to that presented in Lemma 5

of [21] and Lemma 2 in [12] (assuming first-order Markov input distributions).

For the input-constrained BEC, for d = 1, a comparison between the lower bound

and the “memory-1” dual capacity upper bound of Thangaraj [28] are shown in Figure

4.7, along with a plot of the feedback capacity [88]. Our lower bound recovers the

expression in Theorem 2.2 of [20].
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Figure 4.5: Our lower bounds for the (d, ∞)-RLL input-constrained BSC(p), when d =

1, 2, 3.

Figure 4.6: Our lower bounds for the (0, k)-RLL input-constrained BSC(p), when k =

1, 2, 3.
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Figure 4.7: Comparison of the DP lower bound for the (1, ∞)-RLL input-constrained

BEC(ϵ) with bounds in [88] and [28].

4.4 Improvements for the (1, ∞)-RLL Input-Constrained

BEC

In this section, we attempt to improve on the simple lower bounds of the previous

section, for the special case of the (1, ∞)-RLL input-constrained BEC(ϵ), where ϵ is the

erasure probability of the channel. Here, too, we consider inputs that are drawn from

a first-order Markov process. We first provide a numerical algorithm for computing

the so-called first-order capacity of this channel, which is the maximum mutual infor-

mation rate between the first-order Markov inputs and the outputs. Recall that this

first-order capacity is a lower bound on the capacity of the channel1. Our approach

is different from (and somewhat simpler than) the methods in [19], in that it relies on

1Note that the capacity of the (0, 1)-RLL input-constrained BEC, C(0,1)(ϵ), is equal to the capacity

of the (1, ∞)-RLL input-constrained BEC, C(1,∞)(ϵ), for all ϵ ∈ [0, 1], as there exists a bijective mapping

(that flips 0s to 1s and vice versa) between sequences that respect the (1, ∞)-RLL constraint and those

that obey the (0, 1)-RLL constraint. Our algorithm, hence, also computes a lower bound on C(0,1)(ϵ).
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0 1

X = 1

X = 0

X = 0

Figure 4.8: A state transition graph for the (1, ∞)-RLL input constraint. The nodes

of the graph represent the previous input and the labels on the edges represent the

current inputs.

the identification of two accompanying random processes that lead to a novel param-

eterization of the entropy rate of the output Hidden Markov process. We also observe

that the lower bound expression that we work with is the same as the series expansion

type bound in Corollary 5 of [20]. Further, evaluations of our numerical algorithm in-

dicate that the lower bound is close in value to the dual capacity-based upper bound

expression in [28]. We also provide a simple, analytical lower bound, which is given

by a single-parameter optimization problem. This analytical bound is better than the

linear lower bound from Theorem 4.3.1 (or that in Theorem 2 of [20]), for ϵ ⪆ 0.77.

4.4.1 Preliminaries

The channel model that we are working with is shown in Figure 3.2, with the DMC

replaced by a BEC. The constraint on the input sequences, which is the (1, ∞)-RLL

constraint, is a special case of the (d, k)-RLL constraint discussed in the previous sec-

tion. A state transition graph representing the constraint is shown in Figure 4.8. It is

easy to see that this constraint is equivalent to a “no-consecutive-ones” constraint.

By assigning a probability distribution P(x|x−), x ∈ {0, 1}, to each node x− ∈ {0, 1}

of the presentation in Figure 4.8, we can define joint distributions on input sequences

(X1, X2, X3, . . .) that respect the (1, ∞)-RLL constraint. We set P(x = 0|1) = 1 and

we have the flexibility of assigning P(x = 1|0) to be some a ∈ [0, 1]. We set P(xn) =

∏n
i=1 P(xi | xi−1). It can be verified that this induces a first-order Markov chain (Xi)i≥1

on X, and we set P(xi | xi−1) =: Q(xi−1, xi). With a slight abuse of notation, we denote
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by Q the matrix [Q(x−, x)], x−, x ∈ {0, 1}. The matrix Q is then given by

Q =

1− a a

1 0

 ,

For our purposes, we will assume that P(x = 1|0) = a ∈ (0, 1), so that the resulting

Markov chain (Xi)i≥1 is ergodic with (unique) stationary distribution π, with π(0) =
1

1+a and π(1) = a
1+a . We let X0 ∼ π, as the choice of the distribution of the initial state

X0 does not affect the capacity of the channel (see [6, Chapter 4]).

Recall that our objective is to obtain a lower bound on the capacity expression in

Theorem 4.2.1. Following [20], we define the first-order capacity of the (1, ∞)-RLL

input-constrained DMC as

C f = sup
{P(x|x−)}

lim
N→∞

1
N

I(XN; YN), (4.2)

where the maximum is taken over all choices of the probability distributions P(x|x−),

defined for each x− ∈ {0, 1}. As explained above, the only flexibility we have is in

choosing an a ∈ (0, 1) to be assigned to P(x = 1|x− = 0). Note that the definition of

C f allows us to work with larger lower bounds than that in Theorem 4.3.1.

From the following set of inequalities, it is easy to see that the first-order capacity,

C f , is a lower bound on the capacity, C. Let CN := maxPXN
1
N I(XN; YN).

C = lim
N→∞

CN

= sup
N

(
CN −

log |X|
N

)
= sup
{P(xi|xi−1)}i≥1

sup
N

(
1
N

I(XN; YN)− 1
N

)
≥ sup
{P(xi|xi−1)}i≥1

lim inf
N→∞

1
N

I(XN; YN)

≥ sup
{P(x|x−)}

lim
N→∞

1
N

I(XN; YN) = C f ,
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where the second equality follows from the super-additivity of the sequence {NCN +

log |X|}N≥1 (see Theorem 4.6.1 in [6]).

Recall that our focus is on the binary erasure channel, or the BEC, shown in Figure

4.3a. Let ϵ ∈ [0, 1] be the erasure probability of the channel. Further, for a given

sequence of outputs, (Yi)i≥1, we define the associated random processes (X̃i)i≥1 and

(Li)i≥1, where for any j ≥ 1, X̃j ∈ {0, 1} represents the last unerased input that the

decoder, with knowledge of Y j−1, can identify exactly, and Lj ∈ [j] is the location,

counting backwards from j, of this last unerased input, i.e., Xj−Lj = X̃j. If all the

outputs Y j−1 are erasures, we set Lj = j. In what follows, we use x̃i and ℓi to denote

specific instances of X̃i and Li, for a fixed output sequence, yi−1.

4.4.2 Our Results

In this subsection, we provide an expression for the first-order capacity, C f (ϵ), of the

(1, ∞)-RLL input-constrained BEC, which is obtained using the (X̃i)i≥1 and (Li)i≥1

processes defined in the previous subsection. We then discuss a numerical algorithm

for computing C f (ϵ), which is a lower bound on the capacity. We also provide a simple

analytical lower bound on C f (ϵ).

The proposition below follows from the definitions of the associated random pro-

cesses, in the previous subsection.

Proposition 4.4.1. The random process (Li, X̃i, Yi)i≥1 forms a Markov chain.

Before we prove the proposition, it will be useful to state and prove a simple lemma

about the (1, ∞)-RLL input-constrained BEC.

Lemma 4.4.2. For 2 ≤ i ≤ N and for a fixed output sequence yi−1 of a BEC with (1, ∞)-RLL

constrained inputs, we have that the conditional probability P(xi|yi−1) = P(xi|x̃i, ℓi).

Proof. For 2 ≤ i ≤ N, let I(i) ⊆ [i − 1] denote the set of indices corresponding to



Chapter 4. Bounds on the Capacities of Input-Constrained Channels 28

unerased symbols in yi−1. Then,

P(xi | yi−1) = P
(

xi | (yj)j∈I(i)

)
= P

(
xi | (yj)j∈I(i), x̃i, ℓi

)
= P

(
xi | (xj)j∈I(i), x̃i, ℓi

)
= P(xi|x̃i, ℓi),

where the last equality follows from the Markov property of the sequence (Xi)i≥1.

We now prove Proposition 4.4.1.

Proof of Proposition 4.4.1. For notational convenience, we denote the history of the pro-

cess under consideration as Γi−1 := (ℓi−1, x̃i−1, yi−1). Now,

P(Li = ℓi, X̃i = x̃i, Yi = yi|Γi−2, ℓi−1, x̃i−1, yi−1)

(a)
= P(Li = ℓi)P(x̃i|x̃i−1, ℓi, ℓi−1)P(yi|Γi−1, ℓi, x̃i)

(b)
= P(Li = ℓi)P(x̃i|x̃i−1, ℓi, ℓi−1)

(
∑
xi

P(yi|xi)P(xi|x̃i, ℓi)

)
= P(ℓi, x̃i, yi|ℓi−1, x̃i−1, yi−1),

where equality (a) follows from the definitions of the random processes (Li)i≥1 and

(X̃i)i≥1 and the fact that the erasures are independently introduced by the channel at

each time step, and equality (b) follows from an application of Lemma 4.4.2.

We now provide an alternative expression for C f (ϵ).

Theorem 4.4.3. The first-order capacity, C f (ϵ), of the (1, ∞)-RLL input-constrained BEC is

given by

C f (ϵ) = ϵ̄ · max
a∈(0,1)

lim
N→∞

1
N

N

∑
i=2

E
[

hb

(
aQ(Li−1)(X̃i, 0)

)]
, (4.3)

where the parameter, a, is equal to the transition probability P(X = 1|X− = 0) of the station-

ary input Markov process.
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Proof. For the (1, ∞)-RLL input-constrained BEC, for any i ≥ 2, the conditional en-

tropy, H(Yi|Yi−1) can be written as

H(Yi|Yi−1) = E[H(Yi|yi−1)]

= E

[
H

(
∑
xi

P(yi|xi)P(xi|yi−1)

)]
= ϵ̄ ·E[hb(P(Xi = 1|X̃i, Li))] + hb(ϵ)

= ϵ̄ ·ELi,X̃i

[
hb

(
aQ(Li−1)(X̃i, 0)

)]
+ hb(ϵ) (4.4)

where the penultimate inequality makes use of Lemma 4.4.2 and the identity that

H(ac̄, āc̄, c) = hb(c) + c̄hb(a), for all a, c ∈ [0, 1]. The last inequality follows from the

fact that

P(Xi = 1|x̃i, ℓi) = ∑
xi−1

P(Xi = 1|xi−1)Q(ℓi−1)(x̃i, xi−1)

= aQ(ℓi−1)(x̃i, 0).

Now, we have that

C f (ϵ) = sup
{P(x|x−)}

lim
N→∞

1
N

H(YN)− hb(ϵ)

= max
a∈(0,1)

lim
N→∞

1
N

N

∑
i=1

H(Yi|Yi−1)− hb(ϵ)

= ϵ̄ · max
a∈(0,1)

lim
N→∞

1
N

N

∑
i=2

E
[

hb

(
aQ(Li−1)(X̃i, 0)

)]
,

where the last equation follows from equation (4.4).

Theorem 4.4.3 gives rise to a numerical algorithm for computing the first-order ca-

pacity of the (1, ∞)-RLL input-constrained BEC, which we now present. For a fixed

j ≥ 2, we define the function

g(Lj, X̃j; a) := hb(aQ(Lj−1)(X̃j, 0)).



Chapter 4. Bounds on the Capacities of Input-Constrained Channels 30

Algorithm 1 Two-Timescale FDSA Scheme

1: procedure TT-FDSA

2: Pick a0 ∈ (0, 1), and a large positive integer N.

3: Pick {αn}, {βn} s.t. ∑ αn = ∑ βn = ∞, with ∑ α2
n + ∑ β2

n < ∞, αn = o(βn),

α0 = β0 = 1.

4: Set n0 = 0 and nm+1 = min{j > nm : ∑
j
i=nm+1 αi ≥ βm}, m ≥ 0.

5: Fix a small δ ∈ (0, 1). Set i = j = m = 0.

6: while i < N do

7: while nm + 1 ≤ j ≤ nm+1 do

8: Sample X(1)(j), Y(1)(j) using ai − δ.

9: Sample X(2)(j), Y(2)(j) using ai + δ.

10: Compute L(1)
j , X̃(1)

j using the Y(1) process.

11: Compute L(2)
j , X̃(2)

j using the Y(2) process.

12: Set θ(j) :=
g(L(2)

j ,X̃(2)
j ;ai+δ)−g(L(1)

j ,X̃(1)
j ;ai−δ)

2δ .

13: Update j← j + 1.

14: Set ai+1 = ai + ∑
nm+1
j=nm+1 αjθ(j).

15: if ai+1 /∈ (0, 1) then

16: Set ai+1 to a random point in (0, 1).

17: Update m = m + 1 and i = i + 1.

18: Output aN.

Note that the function g corresponds to samples of each summand in the objective

function in (4.3). One approach towards computing the maximum in equation (4.3) is

by an iterative algorithm that updates the parameter a along the direction of the gra-

dient (or an estimate thereof) of the objective function. Our algorithm (shown as Al-

gorithm 1) uses a two-timescale finite difference stochastic approximation (TT-FDSA)

scheme (see, for example, [30], [31]), and employs an estimator of the gradient based

on finite differences between samples. The output of the algorithm is an estimate of

the optimal value of the parameter a, which completely determines an estimate of the
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optimal input distribution. Figure 4.9 shows plots of numerical values of our lower

bound on the capacity for the (1, ∞)-RLL input-constrained BEC, with plots of the lin-

ear lower bound from Theorem 4.3.1 and the dual capacity-based upper bound in [28].

We observe that our lower bound is numerically close in value to the upper bound

in [28] and is at least as large as the linear lower bound, thereby providing an improve-

ment over our previous analytical lower bound for this channel. Figure 4.10 shows

comparisons of the estimates of the optimal values of the parameter a obtained using

our scheme and those obtained using the sampling-based approach in [14]. We note

that our estimates are close in value to those obtained using the approach in [14].

While a straightforward evaluation of Theorem 4.4.3 yields the series expansion

type lower bound in Corollary 5 of Li and Han [20], the next theorem provides a simple,

analytical, single-letter optimization problem as a lower bound on this series expansion

type bound.

We first define the function R(·), which takes as argument the parameter a ∈ (0, 1).

R(a) = hb

(
1

1 + a

)
+

(
ϵ̄

(1− aϵ)(1 + a)

)(
hb

(
1− a
1 + a

)
− 2hb

(
1

1 + a

))
. (4.5)

Theorem 4.4.4. The first-order capacity C f (ϵ) of the (1, ∞)-RLL input-constrained BEC

obeys

C f (ϵ) ≥ ϵ̄ · max
a∈(0,1)

R(a),

where the function R(a) is given in (4.5).

Proof. First, since the inputs are drawn from a stationary Markov process, it follows

that

P(Xi = 1|x̃i, ℓi = i) = π(Xi = 1). (4.6)

Further, for i ≥ 2, we have that

P(Li = k) =

ϵ̄ϵk−1, k ∈ [i− 1],

ϵi−1, k = i.
(4.7)



Chapter 4. Bounds on the Capacities of Input-Constrained Channels 32

Note that the ℓ-step transition probability matrix, Q(ℓ), can be expressed as

Q(ℓ) =

1+(−1)ℓaℓ+1

1+a
a+(−a)ℓ+1

1+a
1+(−1)ℓ−1aℓ

1+a
a+(−a)ℓ

1+a

 ,

Also, we note that for any j ≥ 1, P(X̃j = 1) = π(1), since the input process is stationary

and independent of the erasures introduced by the channel according to equation (4.7).

We now compute a lower bound on C f (ϵ) by working with the expression given in

Theorem 4.4.3. For i ≥ 2, we have

ELi,X̃i

[
hb

(
aQ(Li−1)(X̃i, 0)

)]
= ϵ̄ ·

i−1

∑
j=1

ϵj−1
[
π(0)hb(Q(j−1)(0, 0)) + π(1)hb(Q(j−1)(1, 0))

]
+ ϵi−1hb(π(X = 0))

(a)
≥ ϵ̄ ·

i−1

∑
j=1

ϵj−1
[(

1− 2aj−1

1+a

)
hb

(
1

1+a

)
+
(

aj−1

1+a

)
hb

(
1−a
1+a

)]
+ ϵi−1hb

(
1

1+a

)
= ϵ̄ ·

{
hb

(
1

1+a

) [(
1−ϵi−1

1−ϵ

)
−
( 2

1+a
) (1−(aϵ)i−1

1−aϵ

)]
+
(

1
1+a

) (
1−(aϵ)i−1

1−aϵ

)
hb

(
1−a
1+a

) }
+

ϵi−1hb

(
1

1+a

)
.

where, in the first equality, we have made use of equations (4.6) and (4.7), and the

inequality (a) follows from equations (19) and (20) of [23]. Hence,

C f (ϵ) = ϵ̄ ·max
a

lim
N→∞

1
N

N

∑
i=2

ELi,X̃i

[
hb

(
aQ(Li−1)(X̃i, 0)

)]
≥ ϵ̄ · max

a∈(0,1)
R(a),

where R(a) is as defined in (4.5).

Figure 4.11 shows comparisons of the maximum of the lower bounds on the capac-

ity in Theorem 4.4.4 and in Theorem 4.3.1, with the linear lower bound of Theorem

4.3.1, the dual capacity upper bound in [28], and the feedback capacity upper bound

in [88]. Clearly, the linear lower bound is better than our bound for ϵ ⪆ 0.389, but for
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Figure 4.9: Plots comparing our numerical lower bound with the linear lower bound

in [19] and [29] and the dual capacity-based upper bound in [28].

Figure 4.10: Plot shows comparisons of the estimates of the optimal values of the pa-

rameter a = P(X = 1|X− = 0) for the (1, ∞)-RLL input-constrained BEC with those

obtained from the sampling-based approach in [14]. We observe that our estimates of

the parameter a are less noisy than the estimates from the sampling-based method.

smaller values of ϵ, the lower bound in Theorem 4.4.4 is larger.
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Figure 4.11: Plots comparing the the maximum of the lower bounds on the capacity

in Theorem 4.4.4 and in Theorem 4.3.1, with the linear lower bound of Theorem 4.3.1,

the dual capacity upper bound in [28], and the feedback capacity upper bound in [88].

Note that the analytical bound in Theorem 4.4.4 beats the simple linear lower bound

for ϵ ⪆ 0.389; a ∗ marker has been provided on the ϵ-axis to identify this cross-over

point.

4.5 Conclusions and Directions for Future Work

In this chapter, we provided lower bounds on the capacities of so-called “input-driven”

channels with finitely-many states, which include many input-constrained DMCs. Our

approach, like other approaches in the literature, was to restrict the input distribu-

tions to be first-order Markov. We first obtained simple single-letter lower bounds,

which provided a unified treatment of bounds for different input-constrained chan-

nels from the literature, and extended them to the class of input-driven FSCs. Next, for

the special case of the binary erasure channel (BEC) with a “no-consecutive-ones” in-

put constraint, we derived a series expansion-type lower bound on the capacity, which

recovers the lower bound in [20], by making use of two novel stochastic processes. We
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then provided a numerical stochastic approximation-based algorithm for the compu-

tation of the lower bound and demonstrated that the lower bound is close in value to

the dual capacity-based upper bound in [28]. We also presented a simple analytical

lower bound that is better than the simple single-letter lower bound that we originally

derived for this channel, for large values of the erasure probability.

An important open question in the context of the capacities of input-constrained

BSCs is Wolf’s conjecture [32], which goes as follows:

Conjecture 4.5.1. For the (d, k)-RLL input-constrained BSC(p), with capacity C, we have

that

C ≥ κd,k · (1− hb(p)),

where κd,k is the noiseless capacity of the (d, k)-RLL constraint.

Note that a counterpart of this result for the input-constrained BEC(ϵ) was proved

in Theorem 2.2 of [20] and in Theorem 4.3.1 of this chapter. Future work could hence

look at resolving this conjecture using the tools herein or otherwise. Another direction

for research is to extend the numerical algorithm presented here to more general input-

constrained BECs.



Chapter 5

Constrained Coding Schemes Using

RM Codes: Achievable Rates

We deliberate not about ends, but about means. For a doctor does not deliberate

whether he shall heal, nor an orator whether he shall persuade [. . . ] they consider

how it will be achieved and by what means this will be achieved, until they come to

the first cause [. . . ] and what is last in the order of analysis seems to be the first in

the order of becoming.

Aristotle, Nicomachean Ethics, Book III, 3, 1112b

5.1 Introduction

In the previous chapter, we discussed information-theoretic lower bounds on the ca-

pacities of input-constrained DMCs. This chapter focuses on designing explicit con-

strained coding schemes over a large class of DMCs with runlength-limited (RLL) con-

straints, and deriving lower bounds on their achievable rates. In particular, the codes

we construct are derived from the Reed-Muller (RM) family of codes.

Our focus is on the (d, ∞)-runlength limited (RLL) input constraint, defined in Def-

inition 2, which is a special case of the class of (d, k)-RLL input constraints. The (d, ∞)-

RLL constraint finds application in magnetic recording systems, as a constraint on the

36
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data sequence (where the bit 1 corresponds to a voltage peak of high amplitude and the

bit 0 corresponds to no peak), which ensures that successive 1s are spaced far enough

apart, so that there is little inter-symbol interference between the voltage responses

corresponding to the magnetic transitions. Reference [33] contains many examples of

(d, k)-RLL codes used in practice in magnetic storage and recording. More recently,

(d, k)-RLL input constrained sequences have also been investigated for joint energy

and information transfer performance [34].

We are interested in the transmission of (d, ∞)-RLL constrained codes over input-

constrained, noisy binary-input memoryless symmetric (BMS) channels, without feed-

back, which form a subclass of input-constrained DMCs, without feedback (see Figure

3.2). Examples of BMS channels include the familiar binary erasure channel (BEC) and

binary symmetric channel (BSC), shown in Figures 4.3a and 4.3b.

We recall that for the setting of unconstrained DMCs without feedback, explicit codes

achieving the capacities, or whose rates are very close to the capacities, have been

derived in works such as [35–39]. However, to the best of our knowledge, there are

no explicit coding schemes with provable rate and probability of error guarantees, for

input-constrained DMCs without feedback.

In this chapter, we make progress on the construction of explicit codes over (d, ∞)-

RLL input-constrained BMS channels. Our motivation for constructing (d, ∞)-RLL

constrained codes using RM codes, are the very recent results of Reeves and Pfister [40]

and Abbe and Sandon [41] that Reed-Muller (RM) codes achieve, under bitwise max-

imum a-posteriori probability (bit-MAP) and blockwise maximum a-posteriori prob-

ability (block-MAP) decoding, respectively, any rate R ∈ [0, C), over unconstrained

BMS channels, where C is the capacity of the BMS channel. We note that for the spe-

cific setting of the BEC, Kudekar et al. in [36] were the first to show that Reed-Muller

(RM) codes are capacity-achieving. As a consequence of these results, the constrained

coding schemes we construct have bit- and block-error probabilities going to 0 (using

the bit-MAP and block-MAP decoders for the RM code, respectively), as the block-

length goes to infinity, if the codes are used over (d, ∞)-RLL input-constrained BMS
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channels.

We invite the reader to also refer to Chapter 6 for upper bounds on rates achievable

using (d, ∞)-RLL constrained RM subcodes.

5.2 Some Approaches From Prior Art

There is extensive literature on constrained code constructions that can correct a fixed

number of errors, under a combinatorial error model1 (see Chapter 9 in [2] and the

references therein). Another related line of work that aims to limit error propagation

during the decoding of constrained codes can be found in [42–45]. More recently, the

work [46] proposed the insertion of parity bits for error correction, into those positions

of binary constrained codewords that are unconstrained, i.e., whose bits can be flipped,

with the resultant codeword still respecting the constraint. However, such works do

not analyze the resilience of constrained codes to stochastic channel noise—the stan-

dard noise model in information theory, which is taken up in this chapter (and which

was discussed in Chapter 3).

To the best of our knowledge, the paper [47], on rates achievable by (d, k)-RLL

subcodes of cosets of a linear block code, was the first to consider the problem of coding

schemes over RLL input-constrained DMCs. Specifically, Corollary 1 of [47] shows

via an averaging argument that there must exist, in the limit as the blocklength goes

to infinity, cosets of codes of rate equalling the capacity of the unconstrained BMS

channel, whose (d, k)-RLL constrained (with 0 ≤ d < k ≤ ∞) subcodes have rate

at least κd,k + C − 1, where κd,k is the noiseless capacity of the (d, k)-RLL constraint.

Recall, from Chapter 3 of [2], that if S(n)
(d,k) ⊆ {0, 1}n represented the collection of (d, k)-

RLL constrained binary sequences of length n, then

κd,k = lim
n→∞

log2 |S
(n)
(d,k)|

n
,

1We shall derive upper bounds on the sizes of the largest constrained codes correcting a fixed num-

ber of errors, in Chapter 9.
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where the limit exists by subadditivity arguments (see also Definition 5 in this chapter).

The proof of the averaging argument goes as follows: pick any code of rate C ∈ (0, 1),

and observe that at blocklength n, the average number of constrained codewords in a

coset of the code (including the code itself) is at least 2n
(

κd,k−δn
)

2n(1−C) , for some δn > 0 with

δn
n→∞−−−→ 0. Hence, as n → ∞, the coset containing the largest number of (d, k)-RLL

constrained sequences, has rate at least κd,k + C − 1. However, the work in [47] does

not identify explicit codes over RLL input-constrained channels.

In the context of designing coding schemes over (input-constrained) BMS channels,

it would be remiss to not comment on the rates achieved by polar codes—another fam-

ily of explicit codes that is capacity-achieving over a broad class of channels (see, for

example, [35, 48, 49], and references therein). Following the work of Li and Tan in [50],

it holds that the capacity without feedback of the class of input-constrained DMCs

can be approached arbitrarily closely using stationary, ergodic Markov input distribu-

tions of finite order (see also [24], which shows that Markov processes of increasing

order can come arbitrarily close to the capacity, but does not comment on the proper-

ties of these processes). Moreover, from the results in [49], it follows that polar codes

can achieve the mutual information rate of any stationary, ergodic finite-state Markov

input process, over any DMC. In particular, this shows that polar codes achieve the ca-

pacity of (d, ∞)-RLL input-constrained DMCs, which includes the class of (d, ∞)-RLL

input-constrained BMS channels. However, this observation is not very helpful for the

following reasons:

• We do not possess knowledge of an optimal sequence of Markov input distribu-

tions.

• The polar code construction described above is not explicit, since the choice of

bit-channels to send information bits over is not explicitly known for an arbitrary

BMS channel.

• It is hard to compute the rate achieved by such a coding scheme, since such a

computation reduces to the calculation of the mutual information rate of a hidden
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Markov process.

We mention here that for the ISI channels defined in Chapter 4, there exist works

[17, 51] that construct codes, using low-density parity-check (LDPC) codes, which un-

der a decoding procedure called multistage decoding, approach the mutual informa-

tion rate of the ISI channel using independent, uniformly distributed inputs.

5.3 Summary of Our Contributions

We propose explicit coding schemes using RM codes, with computable rate lower

bounds, over input-constrained BMS channels. In the first part of the chapter, we fix

the ordering of the coordinates of the RM codes we consider to be the standard lex-

icographic ordering, and consider the problem of identifying (d, ∞)-RLL constrained

subcodes of RM codes of rate R, of good rate. Suppose that C is the capacity of the

unconstrained BMS channel. Our first approach to designing (d, ∞)-RLL constrained

codes is simply to identify linear (d, ∞)-RLL subcodes of RM codes of rate R, and com-

pute their rates. The rates we compute are in fact achievable (using the bit-MAP or

block-MAP decoders of the parent RM code) over (d, ∞)-RLL input-constrained BMS

channels, so long as R < C. Next, we present a lower bound on rates of non-linear

(1, ∞)-RLL subcodes of RM codes of R, and derive achievable rates using such codes,

too.

Finally, as an improvement over the rates achievable using (d, ∞)-RLL subcodes,

we propose a new explicit two-stage (or concatenated) coding scheme using RM codes,

and compute explicit rate lower bounds for this scheme, over the input-constrained

binary erasure channel (BEC). For example, when d = 1, we observe that the rates

achieved using this two-stage scheme are better than those achieved by any scheme

that uses linear (1, ∞)-RLL subcodes of RM codes (under almost all coordinate order-

ings), when C ⪆ 0.7613, and better than the rate achieved by our non-linear subcodes

for all C ⪅ 0.55 and C ⪆ 0.79. Moreover, as the capacity of the channel approaches

1, i.e., as the channel noise approaches 0, the rate achieved by our two-stage coding
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scheme can be made arbitrarily close to κd, which is the largest rate achievable, at zero

noise, given the constraint.

5.4 Notation and Preliminaries

5.4.1 Notation

Recall the notation e(n)i that denotes the standard basis vector of length n, with a 1 at

position i, and 0s elsewhere, for i ∈ [n]. When n = 2m, for some m, we interchangeably

index the coordinates of vectors v ∈ {0, 1}n by integers i ∈ [0 : n − 1] and by m-

tuples b = (b1, . . . , bm) ∈ {0, 1}m. We then use the notation e(n)b to denote the standard

basis vector of length n, with a 1 at position b, and 0s elsewhere. The superscript

‘(n)’ will be dropped when clear from context. For any n ∈ N, we denote by S(n)
(d,∞)

,

the set of all n-length binary words that respect the (d, ∞)-RLL constraint, and we set

S(d,∞) =
⋃

n≥1 S(n)
(d,∞)

.

Given a set A, we define the notation 1{x ∈ A} to be equal to 1A(x). All through,

the empty summation is defined to be 0, and the empty product is defined to be 1.

5.4.2 Information Theoretic Preliminaries

Block Codes and Constrained Codes

We recall the following definitions of block codes over F2 and their rates (see, for ex-

ample, Chapter 1 of [57]).

Definition 3. An (n, M) block code C over F2 is a nonempty subset of Fn
2 , with |C| = M.

The rate of the block code C is given by

rate(C) :=
log2 M

n
.

Moreover, given a sequence of codes {C(n)}n≥1, if it holds that rate(C(n)) n→∞−−−→ R,

for some R ∈ [0, 1], then we say that {C(n)}n≥1 is of rate R.
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Definition 4. An [n, k] linear code C over F2 is an (n, 2k) block code that is a subspace of Fn
2 .

Consider now the set S(n)
(d,∞)

of length-n binary words that satisfy the (d, ∞)-RLL

constraint. We reiterate the following definition, which appeared in the previous sec-

tion (see, for example, Chapter 3 of [2]):

Definition 5. The noiseless capacity κd of the (d, ∞)-RLL constraint is defined as

κd := lim
n→∞

log2

∣∣∣S(n)
(d,∞)

∣∣∣
n

= inf
n

log2

∣∣∣S(n)
(d,∞)

∣∣∣
n

,

where the last equality follows from the subadditivity of the sequence
(

log2

∣∣∣S(n)
(d,∞)

∣∣∣)
n≥1

.

Linear Codes Over BMS Channels

A binary-input memoryless channel is a DMC W (see Chapter 3) with input alphabet

X = {0, 1}. A binary-input memoryless symmetric (BMS) channel is symmetric, be-

sides, in that P(y|1) = P(−y|0), for all y ∈ Y. Every such channel can be expressed

as a multiplicative noise channel, in the following sense: if at any i the input random

symbol is Xi ∈ {0, 1}, then the corresponding output symbol Yi ∈ Y is given by

Yi = (−1)Xi · Zi,

where the noise random variables Zn are independent and identically distributed, and

the noise process (Zi)i≥1 is independent of the input process (Xi)i≥1. Common exam-

ples of such channels include the binary erasure channel (BEC(ϵ)), with P(Zi = 1) =

1− ϵ and P(Zi = 0) = ϵ, the binary symmetric channel (BSC(p)), with P(Zi = 1) =

1− p and P(Zi = −1) = p, and the binary additive white Gaussian noise (BI-AWGN)

channel, where Zi ∼ N (1, σ2). Note that we make minor changes to the output alpha-

bets in Figures 4.3a and 4.3b, in order to make them comply with the definition of BMS

channels, here.

In this chapter, we are interested in designing codes over input-constrained BMS

channels. We refer the reader to [40] for definitions of the bitwise maximum a-posteriori
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probability (bit-MAP) decoder and bit-error probability P(n)
b (under bit-MAP decod-

ing), indexed by the blocklength n of the code. We also refer the reader to standard

texts on information theory such as [6], [7] for definitions of blockwise maximum a-

posteriori probability (block-MAP) decoding and block-error probability P(n)
B .

Specifically, we shall be using constrained subcodes of linear codes
{
C(n)

}
n≥1

over

BMS channels. At the decoder end, we shall employ the bit-MAP or block-MAP de-

coders of the parent linear codes
{
C(n)

}
n≥1

(note that the decoders we use are not

tailored to the subcodes we use at the encoder end). Since C(n) is linear, the average

bit-error probability P(n)
b (resp. the average block-error probability P(n)

B ), using the bit-

MAP decoder (resp. block-MAP decoder) of C(n) is the same as the average bit-error

probability (resp. the average block-error probability) when a subcode of C(n) is used

(see [40] for a discussion).

We say that a rate R is achieved by
{
C(n)

}
n≥1

over a BMS channel, under bit-MAP

decoding (resp. under block-MAP decoding), if rate
(
C(n)

)
n→∞−−−→ R, with P(n)

b
n→∞−−−→ 0

(resp. P(n)
B

n→∞−−−→ 0). Hence, any sequence of subcodes of
{
C(n)

}
n≥1

are also such

that their bit-error and block-error probabilities go to zero, as the blocklength goes to

infinity, when the bit-MAP and block-MAP decoders of the parent linear codes are

used.

5.4.3 Reed-Muller Codes: Definitions and BMS Channel Performance

We recall the definition of the binary Reed-Muller (RM) family of codes (see Chapter

13 of [58], or the survey [52], or the monograph [59] for more details). Codewords of

binary RM codes consist of the evaluation vectors of multivariate polynomials over

the binary field F2. Consider the polynomial ring F2[x1, x2, . . . , xm] in m variables.

Note that in the specification of a polynomial f ∈ F2[x1, x2, . . . , xm], only monomi-

als of the form ∏j∈S:S⊆[m] xj need to be considered, since x2 = x over the field F2,

for an indeterminate x. For a polynomial f ∈ F2[x1, x2, . . . , xm] and a binary vector

z = (z1, . . . , zm) ∈ Fm
2 , let Evalz( f ) := f (z1, . . . , zm). We let the evaluation points

be ordered according to the standard lexicographic order on strings in Fm
2 , i.e., if
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z = (z1, . . . , zm) and z′ = (z′1, . . . , z′m) are two distinct evaluation points, then, z oc-

curs before z′ in our ordering if and only if for some i ≥ 1, it holds that zj = z′j for all

j < i, and zi < z′i. Now, let Eval( f ) := (Evalz( f ) : z ∈ Fm
2 ) be the evaluation vector of

f , where the coordinates z are ordered according to the standard lexicographic order.

Definition 6 (see [58], Chap. 13). For 0 ≤ r ≤ m, the rth-order binary Reed-Muller code

RM(m, r) is defined as the set of binary vectors:

RM(m, r) := {Eval( f ) : f ∈ F2[x1, x2, . . . , xm], deg( f ) ≤ r},

where deg( f ) is the degree of the largest monomial in f , and the degree of a monomial ∏j∈S:S⊆[m] xj

is simply |S|.

It is a known fact that the evaluation vectors of all the distinct monomials in the

variables x1, . . . , xm are linearly independent over F2. It then follows that RM(m, r) has

dimension ( m
≤r). Furthermore, RM(m, r) has minimum Hamming distance dmin(RM(m, r))

= 2m−r. The weight of a codeword c = Eval( f ) is the number of 1s in its evaluation

vector, i.e,

wt (Eval( f )) := |{z ∈ Fm
2 : f (z) = 1}| .

The number of codewords in RM(m, r) of weight w, for w ∈ [2m−r : 2m], is given by the

weight distribution function at w:

Am,r(w) := |{c ∈ RM(m, r) : wt (c) = w}| .

The subscripts m and r in Am,r will be suppressed when clear from context.

We also set GLex(m, r) to be the generator matrix of RM(m, r) consisting of rows

that are the evaluations, in the lexicographic order, of monomials of degree less than

or equal to r. The columns of GLex(m, r) will be indexed by m-tuples b = (b1, . . . , bm)

in the lexicographic order.

In this work, we shall use (d, ∞)-RLL constrained subcodes of RM codes, over BMS

channels. We now recall the main results of Reeves and Pfister in [40] and Abbe and
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Sandon in [41], which provides context to our using RM codes over input-constrained

BMS channels. For a given R ∈ (0, 1), consider any sequence of Reed-Muller codes{
Ĉm = RM(m, rm)

}
m≥1, under the lexicographic ordering of coordinates, such that

rate
(
Ĉm
) m→∞−−−→ R. We let C be the capacity of the unconstrained BMS channel un-

der consideration. The following theorems then hold true:

Theorem 5.4.1 (see Theorem 1 of [40] and Theorem 1 of [41]). Any rate R ∈ [0, C) is

achieved by the sequence of codes
{
Ĉm
}

m≥1, under bit-MAP and block-MAP decoding.

As an example, for R ∈ (0, 1), consider the specific sequence of Reed-Muller codes

{Cm = RM(m, rm)}m≥1 with

rm = max
{⌊

m
2
+

√
m

2
Q−1(1− R)

⌋
, 0
}

, (5.1)

where Q(·) is the complementary cumulative distribution function (c.c.d.f.) of the stan-

dard normal distribution, i.e.,

Q(t) =
1√
2π

∫ ∞

t
e−τ2/2dτ, t ∈ R.

From Remark 24 in [36], it follows that rate(Cm)
m→∞−−−→ R. Theorem 5.4.1 then states

that the sequence of codes {Cm}m≥1 achieves a rate R over any unconstrained BMS

channel, so long as R < C.

Remark 5.4.2. We note that by Theorem 5.4.1, for the unconstrained BEC (resp. uncon-

strained BSC) with erasure probability ϵ ∈ (0, 1) (resp. crossover probability p ∈ (0, 0.5) ∪

(0.5, 1)), the sequence of codes {Cm}m≥1 with R = 1− ϵ− δ (resp. with R = 1− hb(p)− δ))

achieves a rate of 1− ϵ− δ (resp. a rate of 1− hb(p)− δ), for all δ > 0 suitably small.

The following important property of RM codes, which is sometimes called the

Plotkin decomposition (see [58, Chap. 13] and [52]), will be of use several times in this

chapter: any Boolean polynomial f ∈ F2[x1, . . . , xm], such that Eval( f ) ∈ RM(m, r) (or
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equivalently, with deg( f ) ≤ r), can be expressed as:

f (x1, . . . , xm) = g(x1, . . . , xm−1) + xm · h(x1, . . . , xm−1), (5.2)

where g, h are such that Eval(g) ∈ RM(m− 1, r) and Eval(h) ∈ RM(m− 1, r− 1), and

the ‘+’ operation is over F2. Note that the polynomials g and h above are uniquely de-

termined, given the polynomial f . Given the sequence of RM codes {Cm = RM(m, rm)}m≥1,

where rm is as in (5.1), we use the notations Cm,+ := RM(m − 1, rm) and Cm,− :=

RM(m− 1, rm − 1), with rate(Cm,+) := Rm,+ and rate(Cm,−) := Rm,−.

In our (d, ∞)-RLL constrained code constructions in this chapter, we shall use con-

strained subcodes of a sequence
{
Ĉm = RM(m, vm)

}
m≥1 of rate R, and explicitly com-

pute the rates of the coding schemes. From the discussion in Section 5.4.2 above, we

arrive at the fact that using the bit-MAP or block-MAP decoders of Ĉm, the rates of

the constrained subcodes of Ĉm, computed in this chapter, are in fact achievable over

(d, ∞)-RLL input-constrained BMS channels, so long as R < C.

5.5 Our Results

In this section, we briefly state our main theorems, and provide comparisons with

the literature. We assume that the BMS channel that we are working with, has an

unconstrained capacity of C ∈ (0, 1).

5.5.1 Rates of Subcodes Under the Lexicographic Coordinate Order-

ing

We first fix the coordinate ordering of the RM codes to be the standard lexicographic

ordering. Our first approach to designing (d, ∞)-RLL constrained codes using RM

codes is constructing a sequence of linear subcodes of {Cm = RM(m, rm)}m≥1, with rm

as in (5.1), which respect the (d, ∞)-RLL input-constraint, and analyzing the rate of the

chosen subcodes. We obtain the following result:
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Theorem 5.5.1. For any R ∈ (0, 1), there exists a sequence of linear (d, ∞)-RLL codes{
C(d)m

}
m≥1, where C(d)m ⊂ Cm, of rate R

2⌈log2(d+1)⌉ .

Remark 5.5.2. We mention here that a sequence of constrained codes of rate R/(d + 1) can

be constructed by simply taking any sequence of codes of rate R and inserting d 0s between

consecutive symbols of codewords in each code. Moreover, using arguments similar to those

made previously, if the sequence of codes of rate R achieved vanishing error probabilities over

a BMS channel, we have that the sequence of constrained codes of rate R/(d + 1) constructed

as mentioned will also achieve vanishing error probabilities in the limit as the blocklength goes

to infinity, using a suitable decoder. The result in Theorem 5.5.1 is interesting in that a rate

that is essentially equal to R/(d + 1) can be achieved without increasing the blocklengths of

the parent (RM) codes, by using just a sequence of their subcodes.

The proof of Theorem 5.5.1 (which is Theorem III.2 in [60]), which contains an ex-

plicit identification of the subcodes
{
C(d)m

}
m≥1, is provided in Section 5.6. From the

discussion in Section 5.4.3, we see that by Theorem 5.5.1, using linear constrained sub-

codes of RM codes over the (d, ∞)-RLL input-constrained BEC, a rate of 1
d+1(1− ϵ) is

achievable when d = 2t − 1, for some t ∈ N, and a rate of 1
2(d+1)(1 − ϵ) is achiev-

able, otherwise. We note, however, that using random coding arguments, or using

the techniques in [21] or [29], a rate of κd(1 − ϵ) is achievable over the (d, ∞)-RLL

input-constrained BEC, where κd is the noiseless capacity of the input constraint (for

example, κ1 ≈ 0.6942 and κ2 ≈ 0.5515). For the (d, ∞)-RLL input-constrained BSC,

similarly, a rate of 1
d+1(1− hb(p)) is achievable when d = 2t − 1, for some t ∈N, and a

rate of 1
2(d+1)(1− hb(p)) is achievable, otherwise. Such a result is in the spirit of, but is

weaker than, the conjecture by Wolf [32] that a rate of κd(1− hb(p)) is achievable over

the (d, ∞)-RLL input-constrained BSC.

For the specific case when d = 1, we now state an existence result that provides

another lower bound on rates of (potentially non-linear) (1, ∞)-RLL constrained sub-

codes of RM codes of rate R.

Theorem 5.5.3. For any R ∈ (0, 1) and for any sequence of codes
{
Ĉm = RM(m, rm)

}
m≥1 of

rate R, following the lexicographic coordinate ordering, there exists a sequence of (1, ∞)-RLL
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subcodes of rate at least max
(
0, R− 3

8

)
.

The proof of Theorem 5.5.3 is provided in Section 5.6. Again, we note from the dis-

cussion in Section 5.4.3, that Theorem 5.5.3 implies that rates of at least max
(
0, C− 3

8

)
are achievable over the (d, ∞)-RLL input-constrained BMS channel. Further, we ob-

serve that the lower bound in the theorem above beats the achievable rate of R
2 in

Theorem 5.5.1, when R > 0.75.

5.5.2 Rates Using Other Coding Strategies

We then design (d, ∞)-RLL constrained codes, whose rates improve on those in

Theorems 5.5.1 and 5.5.3, by using a two-stage (or concatenated) encoding procedure

that employs systematic RM codes of rate R.

Theorem 5.5.4. For any R ∈ (0, 1), there exists a sequence of (d, ∞)-RLL constrained con-

catenated codes {Cconc
m }m≥1, constructed using systematic RM codes of rate R, such that

lim inf
m→∞

rate(Cconc
m ) ≥ κd · R2 · 2−⌈log2(d+1)⌉

R2 · 2−⌈log2(d+1)⌉ + 1− R + 2−τ
,

where τ is an arbitrarily large, but fixed, positive integer. Further, the rate lower bound above

is achievable, under block-MAP decoding, over a (d, ∞)-RLL input-constrained BMS channel,

when R < C, where C is the capacity of the unconstrained BMS channel.

It can be checked that the rates achieved using Theorem 5.5.4 are better than those

achieved using Theorem 5.5.1, and in fact, better than those achieved using any se-

quence of linear (d, ∞)-RLL subcodes of RM codes (see Chapter 6), for high rates R.

Moreover, the rates achieved using Theorem 5.5.4 are larger than those obtained The-

orem 5.5.3, for d = 1 and for low noise regimes of the BMS channel. For example,

when d = 1, the rates achieved using the codes in Theorem 5.5.4 are better than those

achieved using linear subcodes, for R ⪆ 0.7613, and are better than those achieved

using the subcodes of Theorem 5.5.3, for R ⪅ 0.55 and R ⪆ 0.79. Figures 5.1 and 5.2

show comparisons between the lower bounds (achievable rates), under block-MAP de-

coding, in Theorems 5.5.1, 5.5.3, and 5.5.4, with the coset-averaging bound of [47], for
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Figure 5.1: Plot comparing, for d = 1, the rate lower bounds of max
(R

2 , R− 3
8

)
achieved using subcodes, from Theorems 5.5.1 and 5.5.3, with the rate lower bound

achieved using Theorem 5.5.4, with τ = 50, and the coset-averaging lower bound

of max(0, κ1 + R − 1), of [47]. The ∗ and + markers indicate the values of R beyond

which the rate of the coset-averaging bound is larger than that of our two-stage cod-

ing scheme and the coding scheme using linear subcodes, respectively; the ♢ marker

shows the value of R beyond which the rate of our two-stage coding scheme is larger

than the rates achieved using our linear or non-linear subcodes. Here, the noiseless

capacity, κ1 ≈ 0.694.

d = 1 and d = 2, respectively. While [47] provides existence results on rates achieved

using cosets of RM codes, with the rates calculated therein being better than those in

Theorem 5.5.4 in the low noise regimes of the BMS channel, our construction is more

explicit. The code construction leading to Theorem 5.5.4, and the proof of achievability

of the rate lower bound, is taken up in Section 5.7.

We end this section with a remark. Note that the all-ones codeword 1 belongs to the

RM code. Since any codeword c that respects the (0, 1)-RLL constraint can be written

as c = 1 + ĉ, where ĉ respects the (1, ∞)-RLL constraint, the lower bounds of the

theorems above hold for the rate of (0, 1)-RLL subcodes as well. Moreover, since for

any k > 1, a (0, 1)-RLL subcode of an RM code is a subset of a (0, k)-RLL subcode, the
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Figure 5.2: Plot comparing, for d = 2, the rate lower bound of R/4 achieved using

subcodes, from Theorem 5.5.1, the rate lower bound achieved using Theorem 5.5.4,

with τ = 50, and the coset-averaging lower bound of max(0, κ2 + R− 1), of [47]. The

∗ and ◦markers indicate the values of R beyond which the rate of the coset-averaging

bound is larger than that of our two-stage coding scheme and the coding scheme using

linear subcodes, respectively; the ♢ marker shows the value of R beyond which the

rate of our two-stage coding scheme is larger than the rates achieved using our linear

subcodes. Here, the noiseless capacity, κ2 ≈ 0.552.

lower bounds hold over (0, k)-RLL input-constrained BMS channels as well.

5.6 Achievable Rates Using Subcodes

As mentioned in Section 5.5, we work with the Reed-Muller (RM) family of codes,

{Cm = RM(m, rm)}m≥1, under the lexicographic coordinate ordering, with

rm = max
{⌊

m
2
+

√
m

2
Q−1(1− R)

⌋
, 0
}

,

and rate R ∈ (0, 1). We then select subcodes of these codes that respect the (d, ∞)-RLL

constraint, and compute their rate. We first consider the case when d = 1. For this

situation, we provide a complete characterization of (1, ∞)-RLL constrained subcodes
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of RM codes, which will help us identify (1, ∞)-RLL constrained subcodes of {Cm}m≥1.

This characterization will also be of use in our derivation of upper bounds on the rates

of general (potentially non-linear) (1, ∞)-RLL subcodes of RM codes, in Section 6.3.2.

We now set up some definitions and notation for our characterization: we define

a “run” of coordinates belonging to a set A⊆{0, 1}m, to be a contiguous collection of

coordinates, (i, i + 1, . . . , i + ℓ− 1), for some integers ℓ ≥ 1 and i ∈ [0 : 2m − ℓ], such

that B(j) ∈ A, for all i ≤ j ≤ i + ℓ − 1, and B(i − 1), B(i + ℓ) /∈ A. To cover the

corner cases of i = 0 and i = 2m − ℓ, we set B(i − 1) and B(i + ℓ), respectively, to

be the dummy symbol ×, which does not belong to A. The length of such a run is

ℓ; note that we allow ℓ to be 1. For example, a run of 1s in a vector v ∈ {0, 1}m is

a collection of contiguous coordinates, (i, . . . , i + ℓ − 1), such that v(i + k) = 1, for

0 ≤ k ≤ ℓ− 1. Finally, given the code RM(m, r), for g as in equation (5.2), we let Γ(g)

denote the set of all coordinates b, excluding the coordinate (1, 1, . . . , 1), such that b is

the last coordinate in a run of 0s in Eval(g), i.e.,

Γ(g) := {b = (b1, . . . , bm−1) : b is the end of a run of 0s in Eval(g), b ̸= (1, 1, . . . , 1)}.

We now present our characterization of (1, ∞)-RLL subcodes of the code RM(m, r):

Proposition 5.6.1. For any Eval( f ) ∈ RM(m, r), we have that Eval( f ) ∈ S(1,∞) if and only

if the following two conditions (C1) and (C2) are simultaneously satisfied:

(C1): supp(Eval(g)) ⊆ supp(Eval(h))

(C2): h(b) = 0, if b ∈ Γ(g),

where g, h are as in (5.2).

Proof. First, we shall prove that if Eval( f ) ∈ S(1,∞), then (C1) and (C2) hold.

To show that (C1) must hold, let us assume the contrary. Suppose that there exists

some evaluation point b = (b1, . . . , bm−1) ∈ Fm−1
2 such that g(b) = 1 and h(b) = 0.

Then it follows that at evaluation points b1, b2 ∈ Fm
2 such that b1 = b0 and b2 = b1,
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we have f (b1) = f (b2) = 1. Since by construction the points b1 and b2 are consecutive

in the lexicographic ordering, the codeword Eval( f ) /∈ S(1,∞).

Similarly, to show that (C2) must hold, we assume the contrary. Suppose that there

exists some evaluation point b = Bm−1(i) ∈ Fm−1
2 , for some i ∈ [0 : 2m−1 − 2], such

that b ∈ Γ(g) and h(b) = 1. We let b′ = (b′1, . . . , b′m−1) be such that b′ = Bm−1(i +

1). We note that in the code RM(m, r), the coordinates b1 = b1 and b2 = b′0 occur

successively. Again, by simply evaluating (5.2) at the coordinates b1 and b2, we obtain

that f (b1) = f (b2) = 1, implying that the codeword Eval( f ) /∈ S(1,∞).

Next, we shall prove the converse, i.e., that if (C1) and (C2) hold, then Eval( f ) ∈

S(1,∞). Pick any pair of consecutive coordinates z1 = Bm(i) and z2 = Bm(i + 1), in the

lexicographic ordering, for some i ∈ [0 : 2m − 2]. Note that it suffices to prove that

if (C1) and (C2) hold, then it cannot be that f (z1) = f (z2) = 1. Now, consider the

following two cases, for b, b′ ∈ {0, 1}m−1:

1. z1 = b0 and z2 = b1: In this case, if f (z1) = f (b0) = 1, then, from the Plotkin

decomposition in (5.2), we see that g(b) = 1. From (C1), it hence holds that

h(b) = 1. Thus, f (z2) = f (b1) = g(b) + h(b) = 0.

2. z1 = b1 and z2 = b′0: Suppose that f (z1) = f (b1) = 1. This then implies that

b /∈ Γ(g), since otherwise, f (z1) = g(b) + h(b) = 0, by (C2). Further, it cannot be

that g(b) = 1, as then, using (C1), we see that f (z1) = g(b) + h(b) = 0. Hence, it

must be that g(b) = 0 and g(b′) = 0, in which case, it immediately follows that

f (z2) = g(b′) = 0.

5.6.1 Construction of Linear (d, ∞)-RLL Constrained Subcodes

Given the characterization in Proposition 5.6.1, our first construction of a linear

(1, ∞)-RLL subcode of Cm is simply to pick those codewords Eval( f ) ∈ Cm such that

g ≡ 0, where g is as in equation (5.2). It is straightforward to verify that both (C1) and

(C2) in Proposition 5.6.1 are trivially satisfied.
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In other words, we define the (1, ∞)-RLL constrained subcode C(1)m of Cm to be

C(1)m :=
{

Eval( f ) : f = xm · h(x1, . . . , xm−1), where deg(h) ≤ rm − 1
}

. (5.3)

Towards computing the rates of subcodes we work with in this paper, we state and

prove the following lemma:

Lemma 5.6.2. For rm as defined in (5.1) and any sequence of positive integers (tm)m≥1 such

that tm = o(
√

m), we have

lim
m→∞

1
2m−tm

(
m− tm

≤ rm

)
= R.

In particular, for any fixed integer t > 0, lim
m→∞

1
2m (

m−t
≤rm

) = 2−tR.

Proof. Let Sm denote a Bin(m, 1
2) random variable, and note that 1

2m−tm (
m−tm
≤rm

) equals

Pr[Sm−tm ≤ rm]. Further, note that by our choice of rm, for any integer t > 0, we have

for all m large enough,

|rm − rm−t| ≤
∣∣∣∣m2 +

√
m

2
Q−1(1− R) −

(
m− t

2
+

√
m− t
2

Q−1(1− R)
)
+ 1
∣∣∣∣

≤ t
2
+

√
t

2
|Q−1(1− R)|+ 1. (5.4)

Hence, we have rm−tm − νm ≤ rm ≤ rm−tm + νm, with νm := tm
2 +

√
tm
2 |Q−1(1− R)|+ 1.

Consequently, Pr[Sm−tm ≤ rm−tm − νm] ≤ Pr[Sm−tm ≤ rm] ≤ Pr[Sm−tm ≤ rm−tm + νm].

Setting Sm−tm := Sm−tm− 1
2 (m−tm)

1
2
√

m−tm
, we have

Pr[Sm−tm ≤ Q−1(1− R)− νm
1
2
√

m− tm
]

≤ Pr[Sm−tm ≤ rm]

≤ Pr[Sm−tm ≤ Q−1(1− R) +
νm

1
2
√

m− tm
]. (5.5)

Now, by the central limit theorem (or, in this special case, by the de Moivre-Laplace

theorem), Sm−tm converges in distribution to a standard normal random variable, Z.
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Therefore, via (5.5) and the fact that tm and νm are both o(
√

m), we obtain that

lim
m→∞

Pr[Sm−tm ≤ rm] = Pr[Z ≤ Q−1(1− R)] = R,

which proves the lemma.

From Lemma 5.6.2, we calculate the rate of the (1, ∞)-RLL constrained subcode C(1)m

in (5.3) as:

rate
(
C(1)m

)
=

log2

(∣∣∣C(1)m

∣∣∣)
2m

=
( m−1
≤rm−1)

2m =
( m−1
≤rm−1)

(m−1
≤rm

)

(m−1
≤rm

)

2m
m→∞−−−→ R

2
. (5.6)

We now extend our simple construction of linear (1, ∞)-RLL subcodes in (5.3) and

the rate computation in (5.6) to general d, thereby proving Theorem 5.5.1. But before

we do so, we state a simple observation, presented below as a lemma. We recall the

definition of the support of a vector c ∈ Fn
2 : supp(c) = {i : ci = 1}.

Lemma 5.6.3. Given d ≥ 1, if ĉ is such that ĉ ∈ S(d,∞), and supp(c) ⊆ supp(ĉ), then

c ∈ S(d,∞).

We are now in a position to prove Theorem 5.5.1.

Proof of Theorem 5.5.1. For a fixed d ≥ 1, let z := ⌈log2(d + 1)⌉. Consider the subcode

C(d)m of the code Cm, defined as:

C(d)m :=

{
Eval( f ) : f =

( m

∏
i=m−z+1

xi

)
· h(x1, . . . , xm−z), where deg(h) ≤ rm − z

}
.

It is easy to verify that the polynomial q(xm−z+1, . . . , xm) := ∏m
i=m−z+1 xi is such that

its corresponding evaluation vector, Eval(q), obeys Eval(q) ∈ S(2m)
(d,∞)

. This is because

q(y) = 1 if and only if (ym−z+1, . . . , ym) = (1, . . . , 1), and in the lexicographic ordering,

such evaluation points y are spaced apart by 2z − 1 coordinates, where 2z − 1 ≥ d.
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Now, for any polynomial f such that Eval( f ) ∈ C(d)m , it is true that supp(Eval( f )) ⊆

supp(Eval(q)). Hence, Eval( f ) ∈ S(2m)
(d,∞)

via Lemma 5.6.3.

Finally, the rate of the subcode C(d)m can be calculated as follows:

rate
(
C(d)m

)
=

log2

(∣∣∣C(d)m

∣∣∣)
2m

=
( m−z
≤rm−z)

2m =
( m−z
≤rm−z)

(m−z
≤rm

)

(m−z
≤rm

)

2m
m→∞−−−→ 2−zR.

To obtain the limit as m → ∞, we have used Lemma 5.6.2 and the fact that the ratio
( m−z
≤rm−z)

(m−z
≤rm)

converges to 1 as m→ ∞. Towards proving this fact, note that

(
m− z
≤ rm − z

)
=

(
m− z
≤ rm

)
−

rm

∑
i=rm−z+1

(
m− z

i

)
≥
(

m− z
≤ rm

)
− z ·

(
m− z⌊m−z

2

⌋),

and hence, we have that

1−
z · ( m−z
⌊m−z

2 ⌋)

(m−z
≤rm

)
≤

( m−z
≤rm−z)

(m−z
≤rm

)
≤ 1.

Now, consider the expression
z·( m−z

⌊m−z
2 ⌋)

(m−z
≤rm)

. We have that limm→∞

z·( m−z

⌊m−z
2 ⌋)

2m = 0 (in fact,

z·( m−z

⌊m−z
2 ⌋)

2m = O
(

1√
m−z

)
) and that limm→∞

(m−z
≤rm)

2m = 2−zR (from Lemma 5.6.2). Hence, it

follows that 1−
z·( m−z

⌊m−z
2 ⌋)

(m−z
≤rm)

converges to 1, as m→ ∞, implying that the ratio
( m−z
≤rm−z)

(m−z
≤rm)

also

converges to 1 as m→ ∞.

5.6.2 Existence of Larger (Potentially) Non-Linear (1, ∞)-RLL Con-

strained Subcodes

We now proceed to proving Theorem 5.5.3, which establishes the existence of (1, ∞)-

RLL subcodes of rates better than those in Theorem 5.5.1. Before we do so, we state
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and prove a useful lemma on the expected number of runs of 1s in a codeword of a lin-

ear code with dual distance at least 3. Let C⊥ denote the dual code of a given length-n

linear code C, and for a binary vector v ∈ {0, 1}n, let τ0(v) and τ1(v) be the number of

runs of 0s and 1s, respectively, in v, with τ(v) := τ0(v) + τ1(v). Further, given a set A,

we define the indicator function 1{x ∈ A} to be 1 when x ∈ A, and 0, otherwise.

Lemma 5.6.4. Let C be an [N, K] linear code with dmin(C⊥) ≥ 3. Then, by drawing codewords

c ∈ C uniformly at random, we have that

Ec∼Unif(C)[τ(c)] =
N + 1

2
.

Further,

Ec∼Unif(C)[τ0(c)] = Ec∼Unif(C)[τ1(c)] =
N + 1

4
.

Proof. To prove the first part, we note that for any c ∈ C, whose coordinates are indexed

by 0, 1, 2, . . . , N − 1,

τ(c) = 1 + #{0 ≤ i ≤ N − 2 : (ci, ci+1) = (0, 1) or (ci, ci+1) = (1, 0)}. (5.7)

Further, since C⊥ has distance at least 3, it implies that in any two coordinates i ̸= j of C,

all binary 2-tuples occur, and each with frequency 1
4 (see e.g. [58, Chapter 5, Theorem 8]

for a proof). In particular, from (5.7), we have that

Ec∼Unif(C)[τ(c)] = 1 +
N−2

∑
i=0

E[1{(ci, ci+1) = (0, 1)}+ 1{(ci, ci+1) = (1, 0)}]

= 1 +
N−2

∑
i=0

(
Pr[(ci, ci+1) = (0, 1)] + Pr[(ci, ci+1) = (1, 0)]

)
= 1 +

N−2

∑
i=0

1
2
=

N + 1
2

.

To prove the second part, we note that since E[τ(c)] = E[τ0(c)] + E[τ1(c)], it suffices

to show that E[τ0(c)] = E[τ1(c)], when c is drawn uniformly at random from C. To
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this end, observe that given any codeword c ∈ C, we have that

τ1(c)− τ0(c) =


1, if c0 = cN−1 = 1,

−1, if c0 = cN−1 = 0,

0, otherwise.

Hence, when c is drawn uniformly at random from C,

E[τ1(c)]−E[τ0(c)] = E[1{(c0, cN−1) = (1, 1)}]−E[1{(c0, cN−1) = (0, 0)}]

=
1
4
− 1

4
= 0,

thereby proving that E[τ0(c)] = E[τ1(c)].

The following standard coding-theoretic fact will also prove useful (see [58] or [64]

for discussions on shortening codes):

Lemma 5.6.5. Consider an [N, K] linear code C, and let T ⊆ [0 : N − 1] be a collection of its

coordinates. If C
∣∣
T denotes the restriction of C to the coordinates in T, and CT denotes the code

obtained by shortening C at the coordinates in T, then

dim(CT) = K− dim(C
∣∣
T).

In particular, we have that

dim(CT) ≥ K− |T|.

Now, we move on to the proof of Theorem 5.5.3.

Proof of Theorem 5.5.3. Fix any sequence of codes
{
Ĉm = RM(m, rm)

}
m≥1 of rate R ∈

(0, 1). Let H(1)
m be the largest (1, ∞)-RLL subcode of Ĉm. Let Ĉm,+ := RM(m − 1, rm)



Chapter 5. Constrained Coding Schemes Using RM Codes: Achievable Rates 58

and Ĉm,− := RM(m− 1, rm − 1). The following set of equalities then holds:

∣∣∣H(1)
m

∣∣∣ = ∑
f : deg( f )≤rm

1{Eval( f ) ∈ S(1,∞)}

(a)
= ∑

g: deg(g)≤rm

∑
h: deg(h)≤rm−1

1{(g, h) satisfy (C1) and (C2)}

=
∣∣Ĉm,+

∣∣ ·EEval(g)∼Unif(Ĉm,+)

 ∑
h: deg(h)≤rm−1

1{(g, h) satisfy (C1) and (C2)}


=
∣∣Ĉm,+

∣∣ ·EEval(g)∼Unif(Ĉm,+)
[#{h : (g, h) satisfy (C1) and (C2)}] , (5.8)

where (a) holds from Proposition 5.6.1. The following fact will be of use to us: if

R̂m,+ := rate
(
Ĉm,+

)
and R̂m,− := rate

(
Ĉm,−

)
, then

R̂m,+ + R̂m,− =
(m−1
≤rm

) + ( m−1
≤rm−1)

2m−1
m→∞−−−→ 2R.

Now, from the definitions of (C1) and (C2) in Proposition 5.6.1, we have that for a fixed

Eval(g) ∈ Ĉm,+,

#{h : (g, h) satisfy (C1) and (C2)}

= #{h : h(b) = 1 ∀ b ∈ supp(Eval(g)), and h(b′) = 0 ∀ b′ ∈ Γ(g)}.

The right-hand side of the above equality is precisely the number of codewords in the

code obtained by shortening Ĉm,− at the coordinates in S := supp(Eval(g)) ∪ Γ(g).

Note that

|S| = |supp(Eval(g))|+ |Γ(g)| ≤ wt(Eval(g)) + τ0(Eval(g)).

Hence, from the second part of Lemma 5.6.5, we have that

#{h : (g, h) satisfy (C1) and (C2)} ≥ exp2

(
2m−1 · R̂m,− − (wt(Eval(g)) + τ0(Eval(g)))

)
(5.9)
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Plugging (5.9) back in equation (9.1), we get that for m large enough,

∣∣∣H(1)
m

∣∣∣
≥
∣∣Ĉm,+

∣∣ ·EEval(g)∼Unif(Ĉm,+)

[
exp2

(
2m−1 ·

(
R̂m,− −

wt(Eval(g))
2m−1 − τ0(Eval(g))

2m−1

))]
(5.10)

(b)
≥
∣∣Ĉm,+

∣∣ · exp2

(
2m−1 ·

(
R̂m,− −

E[wt(Eval(g))]
2m−1 − E[τ0(Eval(g))]

2m−1

))
(c)
=
∣∣Ĉm,+

∣∣ · exp2

(
2m−1 ·

(
R̂m,− −

1
2
− 1

4
− δm

))
(d)
= exp2

(
2m ·

(
R̂m,+ + R̂m,−

2
− 3

8
− δm

2

))
,

where δm := 1
4·2m−1

m→∞−−−→ 0. Here, (b) holds by an application of Jensen’s inequal-

ity and the linearity of expectation. To see why (c) holds, we note that the RM code

Ĉm,+ has no coordinate that is identically 0. Thus, in a randomly chosen codeword

Eval(g) ∼ Unif(Ĉm,+), every coordinate is equally likely to be 0 or 1, and hence,

E[wt(Eval(g))] = ∑
z∈{0,1}m−1

Pr[g(z) = 1] = 2m−2.

Moreover, by Lemma 5.6.4, we have that

E[τ0(Eval(g))] =
2m−1 + 1

4
.

Finally, (d) holds from the fact that
∣∣Ĉm,+

∣∣ = exp2
(
2m−1 · R̂m,+

)
.

Hence, the largest rate of (1, ∞)-RLL constrained subcodes of
{
Ĉm
}

m≥1 obeys

R(1)(Ĉ) = lim sup
m→∞

max
H(1)

m ⊆Ĉm

log2

∣∣∣H(1)
m

∣∣∣
2m

≥ lim sup
m→∞

2m ·
(

R̂m,++R̂m,−
2 − 3

8 −
δm
2

)
2m

= R− 3
8

.
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Thus, there exists a sequence of (1, ∞)-RLL constrained subcodes of any sequence of

RM codes {Ĉm}m≥1 of rate R, such that the subcodes are of rate of at least max
(
0, R− 3

8

)
.

Although Theorem 5.5.3 proves the existence of non-linear (1, ∞)-RLL subcodes

of rate larger than (for high rates R) that of the linear subcodes of Theorem 5.5.1, it

is of interest to check if further improvements on the rates of (1, ∞)-RLL constrained

subcodes are possible, by performing numerical computations. For a fixed R ∈ (0, 1),

we work with the sequence of RM codes
{
Ĉm = RM(m, vm)

}
m≥1, where

vm := min

{
u :

u

∑
i=0

(
m
i

)
≥ ⌊2m · R⌋

}
.

It can be checked that rate
(
Ĉm
) m→∞−−−→ R. We then have from inequality (5.10) that

R(1)(Ĉ) ≥ max

{
0, lim sup

m→∞

(
R̂m,+ + R̂m,−

2

+
log2 (E [exp2 (−wt(Eval(g))− τ0(Eval(g)))])

2m

)}
,

(5.11)

where the expectation is taken over codewords Eval(g) ∼ Unif(Ĉm,+). Inequality (5.11)

suggests that one can estimate a lower bound on R(1)(Ĉ), by picking a large m and re-

placing the expectation by a sample average over codewords Eval(g) chosen uniformly

at random from Ĉm,+. We can then obtain a new (numerical) lower bound, which does

not make use of a further lower bounding argument via Jensen’s inequality. We per-

formed this Monte-Carlo sampling and estimation procedure, with m = 11, and for

varying values of R, by averaging over 104 uniformly random samples of codewords,

Eval(g). Figure 5.3 shows a plot comparing the lower bound in (5.11), with the lower

bound that is approximately R̂m − 3
8 , from Theorem 5.5.3, where R̂m := rate

(
Ĉm
)
. We

observe that there is a noticeable improvement in the numerical rate lower bound, as

compared to the bound in Theorem 5.5.3, for some values of R̂m.
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Figure 5.3: Plot comparing, for d = 1, the rate lower bound of approximately R̂m − 3
8 ,

from Theorem 5.5.3, with the numerical lower bound obtained by Monte-Carlo simu-

lation, using (5.11).

5.7 A Two-Stage Constrained Coding Scheme

The results summarized in the previous sections provide lower bounds on rates of

(d, ∞)-RLL constrained subcodes of RM codes of rate R. In particular, Theorem 5.5.1

identifies linear subcodes of RM codes of rate 2−⌈log2(d+1)⌉ · R, and for the special case

when d = 1, Theorem 5.5.3 improves upon this lower bound, for a range of R values,

by proving the existence of (non-linear) subcodes of rate at least max
(
0, R− 3

8

)
. Fur-

thermore, using the bit-MAP or block-MAP decoders corresponding to the parent RM

codes, we observe that these rates are achievable over (d, ∞)-RLL input-constrained

BMS channels, so long as R < C, where C is the capacity of the unconstrained BMS

channel. In this section, we provide another explicit construction of (d, ∞)-RLL con-

strained codes via a concatenated (or two-stage) coding scheme, the outer code of

which is a systematic RM code of rate R, and the inner code of which employs the

(d, ∞)-RLL constrained subcodes identified in Theorem 5.5.1. The strategy behind our

coding scheme is very similar to the “reversed concatenation” scheme that is used

to limit error propagation while decoding constrained codes over noisy channels (see
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[42–45] and Section 8.5 in [2]). However, to keep the exposition self-contained, we de-

scribe the scheme from first principles here. We then derive a rate lower bound for

this scheme (see Theorem 5.5.4), and prove that this lower bound is achievable, un-

der block-MAP decoding over (d, ∞)-RLL input-constrained BMS channels, if R < C.

Hence, the lower bound given in Theorem 5.5.4 is achievable, when R ∈ (0, 1) is re-

placed by C. Note that here we use the fact that RM codes achieve any rate R < C,

under block-MAP decoding (see [41]).

We now describe our two-stage coding scheme. Fix a rate R ∈ (0, 1) and any se-

quence
{
Ĉm = RM(m, rm)

}
m≥1 of RM codes of rate R. We interchangeably index the

coordinates of any codeword in Ĉm by m-tuples in the lexicographic order, and by inte-

gers in [0 : 2m− 1]. We make use of the following fact that is formally proved as Lemma

6.3.3 in the next chapter: the set Im,rm := {b = (b1, . . . , bm) ∈ Fm
2 : wt(b) ≤ rm} is an

information set of Ĉm. Recall that an information set of a linear code C is a set of dim(C)

coordinates where all binary dim(C)-tuples occur. For the remainder of this section, we

let m be a large positive integer.

We first set up some notation. Let Km = dim
(
Ĉm
)
= ( m

≤rm
) and Nm := 2m and

note that Nm − Km = (1 + βm)Nm(1− R), where βm is a correction term that vanishes

as m → ∞. For the outer code, or the first stage, of our coding scheme, we shall

work with an RM code in systematic form, in which the first Km positions form the

information set Im,rm . Consider any permutation πm : [0 : Nm − 1] → [0 : Nm − 1]

with the property that πm([0 : Km − 1]) = Im,rm , where, for a permutation σ, and a set

A ⊆ [0 : Nm − 1], we define the notation σ(A) := {σ(i) : i ∈ A}. We then define the

equivalent systematic RM code Cπ
m as

Cπ
m =

{
(cπm(0), cπm(1), . . . , cπm(Nm−1)) : (c0, c1, . . . , cNm−1) ∈ Ĉm

}
.

We let Gπ
m be a systematic generator matrix for Cπ

m. We then recall the definition of

the subcode C(d)n of the code Cn (see (5.1) and the proof of Theorem 5.5.1). We let a

generator matrix of the linear code C(d)n be denoted by G(d)
n .
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Algorithm 2 Construction of (d, ∞)-RLL constrained code Cconc
m

1: procedure CODING-SCHEME(Gπ
m, G(d)

n⋆ )

2: Pick a (d, ∞)-RLL constrained Km-tuple w

3: Obtain c ∈ Cπ
m as c = w · Gπ

m.

4: Set x1 := w.

5: Divide cNm−1
Km

into L equal-length blocks, c1, . . . , cL.

6: for i = 1 : L do

7: Set x2,i = ci · G
(d)
n⋆ .

8: Set x2 = x2,1 . . . x2,L.

9: Transmit x = x1x2.

Encoding

Our encoding algorithm is shown as Algorithm 2, where the values of the parameters L

and n⋆ will be specified later. As mentioned earlier, our (d, ∞)-RLL constrained coding

scheme comprises two stages: an outer encoding stage (E1) and an inner encoding

stage (E2) as given below.

(E1) Pick a (d, ∞)-RLL constrained Km-tuple, w. Encode w into a codeword c ∈ Cπ
m,

using the systematic generator matrix Gπ
m: c = w · Gπ

m. Note that cKm−1
0 = w

is (d, ∞)-RLL constrained. This is shown in Steps 2 and 3 in Algorithm 2. Note

that choosing an RLL constrained word in Step (E1) above can be accomplished

using well-known constrained encoders (see, for example, [67] and Chapters 4

and 5 of [2]), of rates arbitrarily close to the noiseless capacity κd of the (d, ∞)-

RLL constraint.

(E2) Encode the last Nm − Km bits, cNm−1
Km

, of c, using (d, ∞)-RLL constrained code-

words of RM codes of rate R, as shown in Steps 5–7 in Algorithm 2. In what

follows, we elaborate on the choices of L and n⋆ in this part of the algorithm.

The main idea is to encode cNm−1
Km

using the family of linear (d, ∞)-RLL subcodes{
C(d)n

}
n≥1 of rate-R RM codes, given by Theorem 5.5.1. Recall that these subcodes
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achieve rate 2−⌈log2(d+1)⌉ · R as n → ∞. So, encoding the Nm − Km bits in cNm−1
Km

us-

ing a code C(d)n will result in an encoded blocklength of roughly
(Nm−Km

R
)

2⌈log2(d+1)⌉

bits. However, the codes C(d)n have blocklength equal to 2n, so the
(Nm−Km

R
)

2⌈log2(d+1)⌉

encoded bits must be formed by concatenating an integer number of codewords of

blocklength 2n. In other words,
(Nm−Km

R
)

2⌈log2(d+1)⌉ must be an integer multiple of a

power of 2. Writing Nm−Km ≈ Nm(1−R) and recalling that Nm = 2m, we observe that(Nm−Km
R

)
2⌈log2(d+1)⌉ is (approximately) expressible as

(1−R
R
)
2m+⌈log2(d+1)⌉. For this to

be an integer multiple of a power of 2, 1−R
R should be well-approximated by a dyadic

rational of the form L
2τ . Then, choosing n⋆ = m − τ + ⌈log2(d + 1)⌉, we obtain that(1−R

R
)
2m+⌈log2(d+1)⌉ is (approximately) equal to L · 2n⋆

. Thus, it should be possible to

encode the Nm − Km bits cNm−1
Km

by first chopping it up into L equal-length blocks, and

encoding each block using the code C(d)n⋆ . We formalize this argument below.

Pick an arbitrarily small ϵ > 0, and choose large positive integers m0 and τ, and a

positive integer L, such that

(1− R)(1 + βm)

R(1− ϵ)
⊆
[

L− 1
2τ

,
L
2τ

]
, for all m ≥ m0. (5.12)

Note that L and τ, though large, are constants. We then set n⋆ := m− τ+ ⌈log2(d + 1)⌉.

Now, partition the Nm − Km bits, cNm−1
Km

, into L blocks c1, . . . , cL, each ci having Nm−Km
L

bits2. As indicated by Step 7 of Algorithm 2, to encode each ci, i = 1, . . . , L, we

use a code C(d)n⋆ from the family of linear (d, ∞)-RLL RM subcodes
{
C(d)n

}
n≥1 of rate

2−⌈log2(d+1)⌉ · R given by Theorem 5.5.1. We choose n⋆ large enough (by taking m large

enough) that the rate of the subcode C(d)n⋆ is at least 2−⌈log2(d+1)⌉ · R(1− ϵ). With this,

the dimension of the code C(d)n⋆ is

dim
(
C(d)n⋆

)
≥ 2n⋆−⌈log2(d+1)⌉ · R(1− ϵ) = 2m−τ · R(1− ϵ). (5.13)

2For ease of description, we assume that m is such that L divides Nm − Km. The general case can

be handled by appending at most L− 1 0s at the end of the Nm − Km bits, so that the overall length is

divisible by L, thereby giving rise to the same lower bound in Theorem 5.5.4.
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From (5.12), we find that 2−τ · R(1− ϵ) ≥ 1
L (1− R)(1 + βm), so that carrying on from

(5.13), we have

dim
(
C(d)n⋆

)
≥ 1

L
Nm(1− R)(1 + βm) =

Nm − Km

L
.

This means that each block ci can indeed be encoded into a unique codeword of C(d)n⋆ ,

as encapsulated in Step 7 of Algorithm 2.3 Thus, each ci is encoded into a codeword of

C(d)n⋆ , having blocklength Npart := 2n⋆
. Hence, the total encoded blocklength for all the

blocks c1, . . . , cL is Npart · L, and the total number of channel uses for transmission (see

Step 9 of Algorithm 2) is Ntot := Km + Npart · L.

Moreover, we note from the construction of C(d)n in the proof of Theorem 5.5.1 in

Section 5.6 that the first d symbols in x2,i are 0s, for all i ∈ [L]. Hence, the (d, ∞)-RLL

input constraint is also satisfied at the boundaries of the concatenations in Steps 8 and

9 of Algorithm 1.

Decoding

Since we intend transmitting the (d, ∞)-RLL constrained code Cconc
m over a noisy BMS

channel, we now specify the decoding strategy. Let yNtot−1
0 be the vector of symbols

received by the decoder. Decoding is, as encoding was, a two-stage procedure. In the

first stage, the block-MAP decoder of the code Cn⋆ ⊇ C(d)n⋆ , is used for each of the L

parts c1, . . . , cL, to obtain the estimate ĉNm−1
Km

:= (ĉKm , . . . , ĉNm−1) of the last Nm − Km

bits cNm−1
Km

. In the second stage, the block-MAP decoder of the systematic RM code

Cπ
m(R) takes as input the vector yKm−1

0 ĉNm−1
Km

, and produces as (the final) estimate,

ĉKm−1
0 := (ĉ0 . . . , ĉKm−1), of the information bits cKm−1

0 = w. The decoding strategy

is summarized below.

(D1) Decode each of the L parts c1, . . . , cL, using the block-MAP decoder of Cn⋆ , to

obtain the estimate ĉNm−1
Km

.

3It may be necessary to pad ci with some extra 0s to make its blocklength match the dimension of

C(d)n⋆ .
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(D2) Using the vector yKm−1
0 ĉNm−1

Km
as input to the block-MAP decoder of Cπ

m, obtain the

estimate ĉKm−1
0 of the information bits w.

A rate lower bound of the coding scheme in Algorithm 2 and a lower bound on the

probability of correct decoding is provided in the proof of Theorem 5.5.4 below.

Proof of Theorem 5.5.4. Consider the code Cconc
m , given in Algorithm 1, for large values

of m, and the decoding procedure given in (D1)–(D2). By picking m large enough (and

hence Km large enough), we note that for Step 2 of Algorithm 1, there exist constrained

coding schemes (see [67] and Chapters 4 and 5 of [2]) of rate κd − αm, for αm > 0, with

αm
m→∞−−−→ 0. Hence, we see that for large m, the number of possible Km-tuples w that

can be picked, equals 2Km(κd−αm). Since the codeword c and the words x1 and x2 are

determined by w, we have that for large m, the rate of the code Ccos
m obeys

rate(Cconc
m ) ≥

log2

(
2Km(κd−αm)

)
Km + Npart · L

,

where the denominator, Km + Npart · L, is the total number of channel uses. The follow-

ing statements then hold true:

rate(Cconc
m ) ≥

log2

(
2Km(κd−αm)

)
Km + Npart · L

(a)
=

(κd−αm)·Km
Nm

Km
Nm

+ L · 2−τ+⌈log2(d+1)⌉

(b)
≥

(κd−αm)·Km
Nm

Km
Nm

+ 2⌈log2(d+1)⌉ ·
(
(1−R)(1+βm)

R(1−ϵ)
+ 2−τ

) ,

where (a) follows from the definition of Npart and (b) holds due to equation (5.12),

with L · 2−τ ≤
(
(1−R)(1+βm)

R(1−ϵ)
+ 2−τ

)
. Hence, by taking lim infm→∞ on both sides of the
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inequality (b) above, we get

lim inf
m→∞

rate(Ccos
m ) ≥ κd · R

R + 2⌈log2(d+1)⌉ ·
(

1−R
R(1−ϵ)

)
+ 2⌈log2(d+1)⌉−τ

=
(1− ϵ) · κd · R2 · 2−⌈log2(d+1)⌉

(1− ϵ)R2 · 2−⌈log2(d+1)⌉ + 1− R + R · 2−τ(1− ϵ)

≥ (1− ϵ) · κd · R2 · 2−⌈log2(d+1)⌉

(1− ϵ)R2 · 2−⌈log2(d+1)⌉ + 1− R + 2−τ(1− ϵ)

where the first inequality holds since Km
Nm

m→∞−−−→ R and αm, βm
m→∞−−−→ 0, and the last

inequality holds since R ∈ (0, 1). Finally, taking ϵ ↓ 0, we obtain the rate lower bound

in the statement of the Lemma.

We now prove that the rate lower bound derived above, is achievable over a (d, ∞)-

RLL input-constrained BMS channel, using the decoding procedure given in (D1)–

(D2), as long as R < C, where C is the capacity of the unconstrained channel. To this

end, note that Step (D1) decodes the L parts, c1, . . . , cL, each with probability of error

at most ηm > 0, with ηm
m→∞−−−→ 0, if R < C. Hence, the block probability of error

Pr
[
ĉNm−1

Km
̸= cNm−1

Km

]
of the decoding stage (D1), is at most L · ηm. Moreover, given the

event
{

ĉNm−1
Km

= cNm−1
Km

}
, Step (D2) determines the information bits w, with conditional

block probability of error Pr
[
ĉKm−1

0 ̸= w
∣∣ ĉNm−1

Km
= cNm−1

Km

]
≤ δm, with δm > 0 such

that δm
m→∞−−−→ 0, if R < C. Hence, the overall probability of correct estimation of the

information bits w can be bounded as

Pr
[
ĉKm−1

0 = w
]
≥ Pr

[
ĉNm−1

Km
= cNm−1

Km

]
· Pr

[
ĉKm−1

0 = w
∣∣ ĉNm−1

Km
= cNm−1

Km

]
≥ (1− L · ηm) · (1− δm).

As L is a constant, the lower bound on the probability of correct estimation converges

to 1, as m→ ∞.

In Section 5.5, we compared the achievable rate of C
2 , for d = 1, obtained using lin-

ear subcodes of RM codes in Theorem 5.5.1 (using the block-MAP decoder of the larger
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RM codes), with rates achievable by the two-stage coding scheme above. An equiva-

lent way of stating our observations there is that the two-stage coding scheme achieves

a higher rate for erasure probabilities ϵ ⪅ 0.2387, when used over the (1, ∞)-RLL input-

constrained BEC, and for crossover probabilities p that are in the approximate interval

(0, 0.0392) ∪ (0.9608, 1), when used over the (1, ∞)-RLL input-constrained BSC.

5.8 Conclusions and Directions for Future Work

In this chapter, we proposed explicit, deterministic coding schemes, without feed-

back, for binary memoryless symmetric (BMS) channels with (d, ∞)-runlength lim-

ited (RLL) constrained inputs. Achievable rates were calculated by identifying specific

constrained linear subcodes and proving the existence of constrained, potentially non-

linear subcodes, of a sequence of RM codes of rate R. Furthermore, a new explicit

two-stage (or concatenated) coding scheme was proposed, whose rates are better than

our coding schemes using subcodes, for large R.

There is much scope for future work in this line of investigation. Firstly, using

the techniques presented here, it is of interest to check if there exist explicit construc-

tions, using RM codes or any other capacity-achieving (over unconstrained channels)

codes of rate R, whose rates beat the coset-averaging lower bound, for all values of

R ∈ (0, 1). We mention that for rates R close to capacity, the coset-averaging lower

bound is in general poorer than the linear lower bound derived in Chapter 4, for the

input-constrained BEC, and the lower bound conjectured by Wolf (see the Conclusions

section in Chapter 4), for the input-constrained BSC.

Next, given the potential of RM codes to achieve good rates over runlength-limited

input-constrained BMS channels, as this chapter illustrates, one could try to design

explicit coding schemes using RM codes for other channels with memory such as ISI

channels (see Chapter 4) and Gilbert-Elliott channels [68], which find application in

wireless communications.



Chapter 6

Constrained Coding Schemes Using

RM Codes: Upper Bounds1

”Remember that you and I made this journey together to a place where there was

nowhere left to go.”

Jhumpa Lahiri, The Namesake, 2003

6.1 Introduction

In the previous chapter, we discussed lower bounds on the achievable rates of cod-

ing schemes designed using Reed-Muller (RM) codes, over input-constrained binary-

input memoryless symmetric (BMS) channels. The input constraint of interest, which

is the (d, ∞)-RLL constraint, admits only those binary sequences that have at least d 0s

between successive 1s (see Definition 2). We first showed an explicit construction of

a simple constrained coding scheme using linear (d, ∞)-RLL subcodes of RM codes of

rate R ∈ (0, 1). The rate of this coding scheme was shown to be at least R · 2−⌈log2(d+1)⌉.

1This chapter depends on and draws from the material in Chapter 5. We hence recommend that the

reader reads Chapters 5 and 6 in the order of their presentation.
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For the special case when d = 1, we then showed the existence of (potentially non-

linear) subcodes of rate at least max
(

R− 3
8 , 0
)
, which beats the rate of the simple lin-

ear coding scheme for high values of R. Next, we demonstrated a two-stage (concate-

nated) constrained coding scheme using RM codes of rate R, whose rate is larger than

the rates achievable using just constrained subcodes of RM codes. Finally, we argued

that all the rates calculated above are achievable (with error probabilities going to zero

as the blocklength goes to infinity) over (d, ∞)-RLL input-constrained BMS channels.

Our objective in this chapter is to derive upper bounds on the rates of (d, ∞)-RLL

constrained subcodes of RM codes of rate R ∈ (0, 1). First, we fix the coordinate

ordering to be the standard lexicographic ordering. With this assumption, we then

impose the additional restriction that the subcodes be linear. Under this restriction,

we show that the linear (d, ∞)-RLL subcodes we constructed in Chapter 5 are essen-

tially rate-optimal. Next, we consider general (not necessarily linear) constrained sub-

codes of RM codes, and derive an upper bound on the rate of the largest (1, ∞)-RLL

subcodes of a certain canonical sequence of RM codes of rate R, which we had also

used in our lower bounds. Our novel method of analysis involves using an alterna-

tive characterization of (1, ∞)-RLL codewords of RM codes, and employs properties of

the weight distribution of RM codes—a topic that has received revived attention over

the last decade (see, for example, the survey [52] and the papers [53–56, 62]). Unfortu-

nately, this method does not readily extend to the (d, ∞)-RLL case, upper bounds for

which remain an open problem. We shall then attempt to reconcile our learnings about

achievable rates using random codes (in the form of Markov input distributions), from

Chapter 4, and the achievable rates using RM codes that we derive, in this chapter.

Next, since permutations of coordinates have the potential to convert a binary word

that does not respect the (d, ∞)-RLL constraint to one that does, we ask the question

if under alternative coordinate orderings, we can obtain linear (d, ∞)-RLL subcodes of

RM codes of rate R, of rate larger than the upper bound that we had derived for the

case when the coordinates follow the lexicographic ordering. We show that for RM

codes of large enough blocklength, under almost all coordinate permutations, linear
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(d, ∞)-RLL subcodes must respect a rate upper bound that is at most an additive fac-

tor of δ larger than our upper bound under the lexicographic ordering, where δ > 0

can be arbitrarily small. We mention that in the context of rates achievable over BMS

channels, if we were to replace R in the rates calculated with C (the capacity of the

unconstrained BMS channel), then the upper bounds we have computed give rise to

upper bounds on rates achievable over (d, ∞)-RLL input-constrained BMS channels, if

the sub-optimal bit-MAP or block-MAP decoders of the larger RM codes were used for

decoding. Moreover, by arguments identical to those made in the end of Section 5.5,

we note that our upper bounds also hold for the (0, 1)-RLL constraint.

We invite the reader to refer to Section 5.4 for the necessary notation and prelimi-

naries on RM codes and BMS channels.

6.2 Our Results

In this section, we briefly state our main theorems, and provide comparisons with the

literature. We assume that the BMS channel that we are working with has an uncon-

strained capacity of C ∈ (0, 1).

6.2.1 Upper Bounds on Rates Under the Lexicographic Coordinate

Ordering

We first state a theorem that provides upper bounds on the largest rate of linear (d, ∞)-

RLL subcodes of RM codes, where the coordinates are ordered according to the lexico-

graphic ordering. Fix any sequence of codes
{
Ĉm = RM(m, rm)

}
m≥1 of rate R ∈ (0, 1)

and let R(d)
(Ĉ) be the largest rate of linear (d, ∞)-RLL subcodes of

{
Ĉm
}

m≥1. Formally,

R
(d)

(Ĉ) := lim sup
m→∞

max
H(d)⊆Ĉm

log2

∣∣∣H(d)
∣∣∣

2m , (6.1)

where the maximization is over linear (d, ∞)-RLL subcodesH(d)
of Ĉm. Then,
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Theorem 6.2.1. For any R ∈ (0, 1) and for any sequence of codes
{
Ĉm = RM(m, rm)

}
m≥1 of

rate R, following the lexicographic coordinate ordering,

R
(d)

(Ĉ) ≤ R
d + 1

.

Thus, Theorem 6.2.1 shows that the sequence of simple linear subcodes
{
C(d)m

}
m≥1

,

identified in Theorem 5.5.1, is rate-optimal whenever d + 1 is a power of 2, in that it

achieves the rate upper bound of R
d+1 . Moreover, it follows from Theorem 6.2.1, that the

subcodes identified in Theorem 5.5.3 must be non-linear when R > 0.75. Theorem 6.2.1

is proved in Section 6.3.1. Also, from the discussion in Section 5.4.3 and from Theorem

6.2.1, we see that the largest rate achievable over a (d, ∞)-RLL input-constrained BMS

channel, using linear (d, ∞)-RLL subcodes of RM codes, when the sub-optimal bit-

MAP or block-MAP decoders of the larger RM codes are used, is bounded above by
C

d+1 .

We remark here that the problem of identifying linear codes that are subsets of the

set of (d, ∞)-RLL sequences of a fixed length, has been studied in [61]. The results

therein show that the largest linear code within S(n)
(d,∞)

has rate no larger than 1
d+1 ,

as n → ∞. However, such a result offers no insight into rates achievable over BMS

channels.

Concluding the discussion on rates achievable using subcodes of RM codes, follow-

ing the lexicographic coordinate ordering, we state a theorem that provides an upper

bound on the largest rate of (1, ∞)-RLL subcodes of the sequence {Cm = RM(m, rm)}m≥1,

where rm is as in (5.1). We formally define this largest rate to be

R(1)(C) := lim sup
m→∞

max
H(1)⊆Cm

log2

∣∣∣H(1)
∣∣∣

2m ,

where the maximization is over (1, ∞)-RLL subcodesH(1) of Cm. Then,
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Theorem 6.2.2. For the sequence of codes {Cm = RM(m, rm)}m≥1, with rm as in (5.1),

R(1)(C) ≤ min
(

7R
8

, κ1

)
,

where κ1 = log2

(
1+
√

5
2

)
≈ 0.6942 is the noiseless capacity of the (1, ∞)-RLL constraint.

The proof of the theorem is taken up in Section 6.3.2. We note that the upper bound

in the theorem above is an improvement over the upper bound in [60], due to the use of

better upper bounds on the weight distribution, from [56], as compared to those in [62].

Figure 6.1 shows a comparison between the upper bound in Theorem 6.2.2, and the

lower bounds of Theorems 5.5.1 and 5.5.3, for the case when d = 1. From the discussion

in Section 5.4.3, we see that Theorem 6.2.2 shows that the rate achievable over (1, ∞)-

RLL input-constrained BMS channels, using constrained subcodes of {Cm}m≥1, when

the sub-optimal bit-MAP or block-MAP decoders of the larger RM codes are used, is

bounded above by min
(

7C
8 , κ1

)
, where C is the capacity of the unconstrained BMS

channel. Figure 6.2 shows comparisons, for the specific case of the (1, ∞)-RLL input-

constrained BEC, of the upper bound of min
(7

8 · (1− ϵ), κ1
)
, obtained by sub-optimal

decoding, in Theorem 6.2.2, with the achievable rate of κ1 · (1− ϵ) (from [63] and [29]),

and the numerically computed achievable rates using the Monte-Carlo method in [14]

(or the stochastic approximation scheme in Chapter 4). For large values of the erasure

probability ϵ, we observe that the upper bound of min
(7

8 · (1− ϵ), κ1
)

lies below the

achievable rates of [14], thereby indicating that it is not possible to achieve the capac-

ity of the (1, ∞)-RLL input-constrained BEC, using (1, ∞)-RLL subcodes of {Cm}m≥1,

when the bit-MAP or block-MAP decoders of {Cm}m≥1 are used for decoding. We

conjecture that this numerically verified fact is indeed true.

6.2.2 Rates of Subcodes Under Alternative Coordinate Orderings

Next, we consider situations where the coordinates of the RM codes follow order-

ings different from the standard lexicographic ordering. First, we study upper bounds

on the rates of linear (d, ∞)-RLL subcodes of RM codes, whose coordinates are ordered
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Figure 6.1: A comparison between the upper bound of Theorem 6.2.2 and achievable

rates of R/2 and max
(
0, R− 3

8

)
, from Theorems 5.5.1 and 5.5.2, respectively, when

d = 1.

Figure 6.2: A comparison between the upper bound of Theorem 6.2.2 and the achiev-

able rates of [63] and [14] (or equivalently, Algorithm 1 in Chapter 4). For large

ϵ, the upper bound of Theorem 6.2.2, under sub-optimal decoding, lies below the

numerically-computed achievable rates in [14].

according to a Gray ordering (see Section 6.3.3 for a description of a Gray ordering).

For a fixed R ∈ (0, 1), let
{
CG

m
}

m≥1 be any sequence of RM codes following a Gray

coordinate ordering, such that rate
(
CG

m
) m→∞−−−→ R. Let R(d)

(CG) denote the largest rate
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of linear (d, ∞)-RLL subcodes of
{
CG

m
}

m≥1. Formally,

R
(d)

(CG) := lim sup
m→∞

max
H(d)

G ⊆CG
m

log2

∣∣∣H(d)
G

∣∣∣
2m , (6.2)

where the maximization is over linear (d, ∞)-RLL subcodes H(d)
G of CG

m(R). We obtain

the following result:

Theorem 6.2.3. For any R ∈ (0, 1) and for any sequence of RM codes
{
CG

m
}

m≥1 of rate R,

following a Gray coordinate ordering,

R
(d)

(CG) ≤ R
d + 1

.

The proof of Theorem 6.2.3 is provided in Section 6.3.3. Again, Theorem 6.2.3 pro-

vides an upper bound on the rates achieved over a (d, ∞)-RLL input-constrained BMS

channel, using linear subcodes of Gray-ordered RM codes of rate R, when the sub-

optimal bit-MAP or block-MAP decoders of
{
CG

m
}

m≥1 are used, for decoding.

Now, we consider arbitrary orderings of coordinates, defined by the sequence of

permutations (πm)m≥1, with πm : [0 : 2m − 1] → [0 : 2m − 1]. As with the Gray

coordinate ordering, we define the sequence of π-ordered RM codes {Cπ
m}m≥1, with

Cπ
m :=

{
(cπm(0), cπm(1), . . . , cπm(2m−1)) : (c0, c1, . . . , c2m−1) ∈ Ĉm

}
,

where
{
Ĉm = RM(m, rm)

}
m≥1 is any sequence of RM codes of rate R. We also define

H(d)
π be the largest linear (d, ∞)-RLL subcode of Cπ

m. The theorem below is then shown

to hold:

Theorem 6.2.4. For any R ∈ (0, 1), for large m and for all but a vanishing fraction of co-

ordinate permutations, πm : [0 : 2m − 1] → [0 : 2m − 1], the following rate upper bound

holds:
log2

∣∣∣H(d)
π

∣∣∣
2m ≤ R

d + 1
+ ϵm,
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where ϵm
m→∞−−−→ 0.

Section 6.3.3 contains the proof of Theorem 6.2.4.

6.3 Upper Bounds on Rates of Constrained Subcodes

In this section, we derive upper bounds on the rates of (d, ∞)-RLL constrained sub-

codes of RM codes of rate R ∈ (0, 1). In the first subsection, we restrict our subcodes

to be linear, while in the second subsection, we fix d to be 1 and relax the assumption

of linearity of the subcodes. Additionally, in the first two subsections, we assume that

the RM codes follow a lexicographic coordinate ordering. We consider RM codes un-

der other coordinate orderings in the last subsection, and derive upper bounds on the

rates of linear (d, ∞)-RLL constrained subcodes.

6.3.1 Linear Subcodes

We fix a sequence of codes
{
Ĉm = RM(m, rm)

}
m≥1 of rate R, whose coordinates follow

a lexicographic ordering. We first state and prove a fairly general proposition on the

rates of linear (d, ∞)-RLL subcodes of linear codes. Recall that for an [N, K] linear code

C over F2, of blocklength N and dimension K, an information set is a collection of K

coordinates in which all possible K-tuples over F2 can appear. Equivalently, if G is

any generator matrix for C, an information set is a set of K column indices such that G

restricted to those columns is a full-rank matrix. As usual, we index the coordinates of

the code from 0 to N − 1.

Proposition 6.3.1. Let C be an [N, K] binary linear code. If I is an information set of C that

contains t disjoint (d + 1)-tuples of consecutive coordinates (i1, i1 + 1, . . . , i1 + d), (i2, i2 +

1, . . . , i2 + d), ..., (it, it + 1, . . . , it + d), with i1 ≥ 0, ij > ij−1 + d, for all j ∈ [2 : t], and

it ≤ N − 1− d, then the dimension of any linear (d, ∞)-RLL subcode of C is at most K− dt.

Proof. Suppose that the information set I contains exactly t disjoint (d + 1)-tuples of
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consecutive coordinates as in the statement of the proposition. By definition, all possi-

ble K-tuples appear in the coordinates in I . Now, consider any linear (d, ∞)-RLL sub-

code C of C, and any (d + 1)-tuple of consecutive coordinates {ij, ij + 1, . . . , ij + d} ∈ I ,

for j ∈ [t]. Since the (d, ∞)-RLL constraint requires that successive 1s be separated by

at least d 0s, the only possible tuples of d + 1 consecutive symbols in any codeword of

the linear subcode are (0, 0, . . . , 0) and at most one of e(d+1)
i , i ∈ [d+ 1]. This is because,

if e(d+1)
i and e(d+1)

j both occur in a collection of d + 1 consecutive positions, then, by

linearity of the subcode C, we have e(d+1)
i + e(d+1)

j (where the addition is over vectors

in Fd+1
2 ) must occur in some codeword of the subcode, thereby making the codeword

not (d, ∞)-RLL compliant. Hence, for every (d + 1)-tuple of consecutive coordinates in

I , only a 2−d fraction of the 2d+1 possible tuples are allowed. Thus, overall, the number

of possible K-tuples that can appear in the information set I in the codewords of the

linear subcode is at most 2K

2dt . Hence, the number of codewords in the linear subcode is

at most 2K−dt.

In order to obtain an upper bound, as in Theorem 6.2.1, on the rate of linear (d, ∞)-

RLL subcodes of the sequence of codes
{
Ĉm
}

m≥1, we shall first identify an information

set of Ĉm = RM(m, rm). We then compute the number of disjoint (d + 1)-tuples of

consecutive coordinates in the information set, and apply Proposition 6.3.1 to get an

upper bound on the dimension of the linear constrained subcodes.

Given the integers m and r, consider the binary linear code C̃(m, r) (which is a sub-

space of F2m

2 ), spanned by the codewords in the set

Bm,r :=

{
Eval

(
∏
i∈S

xi

)
: S ⊆ [m] with |S| ≥ r + 1

}
. (6.3)

From the discussion in Section 5.4.3, we observe that the vectors in Bm,r are lin-

early independent, and, hence, Bm,r forms a basis for C̃(m, r), with dim
(
C̃(m, r)

)
=

( m
≥r+1). Moreover, the codewords in C̃(m, r) are linearly independent from codewords

in RM(m, r), since the evaluation vectors of all the distinct monomials in the variables
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x1, . . . , xm are linearly independent over F2.

The following lemma identifies an alternative basis for C̃(m, r), which will prove

useful in our analysis, later on.

Lemma 6.3.2. Consider the code C̃(m, r) = span (Bm,r), where Bm,r is as in (6.3). We then

have that C̃(m, r) = span ({eb : wt(b) ≥ r + 1}).

Proof. Note that any standard basis vector eb, with wt(b) ≥ r + 1, can be written as

Eval( f ), where

f (x1, . . . , xm) = ∏
i∈supp(b)

xi · ∏
i/∈supp(b)

(1 + xj).

From the fact that wt(b) ≥ r + 1, we have that the degree of any monomial in f is at

least r + 1, and hence, Eval( f ) = eb ∈ span(Bm,r) = C̃(m, r). The result follows by

noting that {eb : wt(b) ≥ r + 1} is a collection of linearly independent vectors of size

( m
≥r+1), which, in turn, equals dim

(
C̃(m, r)

)
.

We now introduce some further notation: given a p× q matrix M, we use the no-

tation M[U ,V ] to denote the submatrix of M consisting of the rows in the set U ⊆ [p]

and the columns in the set V ⊆ [q]. We recall the definition of the generator matrix

GLex(m, r), of RM(m, r), and the indexing of columns of the matrix, from Section 5.4.3.

Finally, towards identifying an information set of RM(m, r), we define the set of coor-

dinates

Im,r := {b = (b1, . . . , bm) ∈ Fm
2 : wt(b) ≤ r}. (6.4)

Lemma 6.3.3. The set of coordinates Im,r is an information set of RM(m, r).

Proof. In order to prove that Im,r is an information set of RM(m, r), it is sufficient to

show that GLex(m, r) restricted to the columns in Im,r is full rank.

Now, consider the generator matrix G̃(m, r), of C̃(m, r), consisting of rows that are

vectors in Bm,r. We build the 2m × 2m matrix

H :=


G̃(m, r)

GLex(m, r)

 ,
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with H being full rank. Note that, from Lemma 6.3.2, any standard basis vector eb, with

b ∈ I c
m,r, belongs to rowspace(G̃(m, r)). By Gaussian elimination, it is then possible

to replace the first ( m
≥r+1) rows of H, corresponding to the submatrix G̃(m, r), with the

standard basis vectors eb, with b ∈ I c
m,r. Clearly, from the fact that H is full rank,

this then means that H
[[
( m
≥r+1) + 1 : 2m

]
, Im,r

]
is full rank, or equivalently, GLex(m, r)

restricted to columns in Im,r is full rank.

We thus have that an information set of Ĉm is Im,rm . Note that in order to get an

upper bound on the rate of linear (d, ∞)-RLL subcodes of Ĉm, we need only calculate

the number of disjoint (d + 1)-tuples of consecutive coordinates in Im,rm .

To this end, for any 0 ≤ r ≤ m− 1, we define

Γm,r := {s ∈ [0 : 2m − 2] : B(s) ∈ Im,r, but B(s + 1) /∈ Im,r} , (6.5)

to be the set of right end-point coordinates of runs that belong to Im,r. We refer the

reader to Section 5.6 for the definition of a run of coordinates belonging to a specific set.

The number of such runs is |Γm,r|. Observe that since r ≤ m− 1, we have 2m− 1 /∈ Im,r.

In the case where r = m, we have that Im,r = [0 : 2m − 1], and we define Γm,r to be

{2m − 1}. However, this special case need not be considered, for our purposes.

Lemma 6.3.4. For 0 ≤ r ≤ m− 1, the equality |Γm,r| = (m−1
r ) holds.

Proof. Let r ∈ [0 : m − 1]. Note that every right end-point of a run, s ∈ Γm,r, with

s ∈ [0 : 2m − 2], is such that wt(B(s)) ≤ r, but wt(B(s + 1)) ≥ r + 1. We now claim

that an integer s ∈ Γm,r iff B(s) = (b1, . . . , bm−1, 0), for b1, . . . , bm−1 ∈ {0, 1}, with

wt((b1, . . . , bm−1, 0)) = r.

To see this, note that if B(s) = (b1, . . . , bm−1, 0), then B(s + 1) = (b1, . . . , bm−1, 1).

Hence, if wt((b1, . . . , bm−1)) = r, then s ∈ Γm,r. Conversely, if s ∈ Γm,r, then B(s)

cannot end in a 1. Indeed, if this were the case, then we would have B(s) being

of the form (b1, . . . , bℓ, 0, 1, . . . , 1), with b1, . . . , bℓ ∈ {0, 1}, so that B(s + 1) would be

(b1, . . . , bℓ, 1, 0, . . . , 0), the weight of which does not exceed that of B(s). So, B(s) must
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be of the form (b1, . . . , bm−1, 0), and so, B(s+ 1) = (b1, . . . , bm−1, 1). From wt(B(s)) ≤ r

and wt(B(s + 1)) ≥ r + 1, we obtain that wt(b1 . . . bm−1) = r.

This then implies that the number of runs, which is equal to the number of right

end-points of runs, exactly equals (m−1
r ).

With the ingredients in place, we are now in a position to prove Theorem 6.2.1.

Proof of Theorem 6.2.1. Fix a sequence of codes
{
Ĉm = RM(m, rm)

}
m≥1 of rate R ∈ (0, 1),

with rm ≤ m− 1, for all m. We use the notation Km := ( m
≤rm

) to denote the dimension

of Ĉm.

Now, for a given m, consider the information set Im,rm (see (6.4)). We know from

Lemma 6.3.4 that the number of runs, |Γm,rm |, of coordinates that lie in Im,rm , is exactly

(m−1
rm

). Now, note that the ith run (si, . . . , si + ℓi − 1), of length ℓi, with si ∈ Γm,rm and

i ∈ [|Γm,rm |], contributes
⌊

ℓi
d+1

⌋
disjoint (d + 1)-tuples of consecutive coordinates in

Im,r. It then holds that the overall number of disjoint (d + 1)-tuples of consecutive

coordinates in Im,r is tm, where

tm =
|Γm,rm |

∑
i=1

⌊
ℓi

d + 1

⌋

≥
|Γm,rm |

∑
i=1

(
ℓi

d + 1
− 1
)

=
Km

d + 1
− |Γm,rm | =

Km

d + 1
−
(

m− 1
rm

)
,

where the last equality follows from Lemma 6.3.4.
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Using Proposition 6.3.1, it follows that the dimension of any linear (d, ∞)-RLL sub-

codeH(d) ⊆ Ĉm is at most Km − dtm. Then,

R
(d)

(Ĉ) = lim sup
m→∞

max
H(d)⊆Ĉm

log2

∣∣∣H(d)
∣∣∣

2m

≤ lim sup
m→∞

Km − dtm

2m

≤ lim sup
m→∞

Km − dKm
d+1 + d · (m−1

rm
)

2m

≤ lim
m→∞

Km
d+1 + d · ( m−1

⌊m−1
2 ⌋)

2m

=
R

d + 1
,

where the last equality holds from the fact that ( m−1
⌊m−1

2 ⌋) is O
(

2m
√

m−1

)
, and limm→∞

Km
2m =

R.

6.3.2 General Subcodes

In this section, we provide upper bounds on the rates of (1, ∞)-RLL subcodes of {Cm =

RM(m, rm)}m≥1, where

rm = max
{⌊

m
2
+

√
m

2
Q−1(1− R)

⌋
, 0
}

.

Recall that {Cm = RM(m, rm)}m≥1 is a sequence of RM codes of rate R. We fix the

coordinate ordering to be the standard lexicographic ordering.

Recall also, from Lemma 5.6.1, that any (1, ∞)-RLL subcode of Cm must be such

that both conditions (C1) and (C2) are simultaneously satisfied. Therefore, to obtain an

upper bound on the number of codewords Eval( f ) ∈ Cm that respect the (1, ∞)-RLL

constraint, it is sufficient to obtain an upper bound on the number of Eval( f ) ∈ Cm

that satisfy (C1) alone. In other words, we wish to obtain an upper bound on the

number of pairs of polynomials (g, h) (see the Plotkin decomposition in (5.2)), with

Eval(g) ∈ Cm,+ and Eval(h) ∈ Cm,−, such that supp(Eval(g)) ⊆ supp(Eval(h)).
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The following two lemmas from the literature will be useful in the proof of Theorem

6.2.2.

Lemma 6.3.5 ( [53], Lemma 36). Let V ⊆ Fm
2 be such that |V| ≥ 2m−u, for some u ∈ N.

Then,

rank(Gm,r[V ]) >
(

m− u
≤ r

)
,

where Gm,r is a generator matrix of RM(m, r), and Gm,r[V ] denotes the set of columns of Gm,r,

indexed by V .

The lemma below follows from Theorem 1 in [56], by noting that the Reed-Muller

code is transitive:

Lemma 6.3.6. Let the weight distribution of RM(m, r) be (Am,r(w) : 0 ≤ w ≤ 2m). Then,

Am,r(w) ≤ exp2

((
m
≤ r

)
· hb

( w
2m

))
,

where hb(·) is the binary entropy function.

We now provide the proof of Theorem 6.2.2.

Proof of Theorem 6.2.2. Fix the sequence {Cm = RM(m, rm)}m≥1 of RM codes, with rm =

max
{⌊

m
2 +

√
m

2 Q−1(1− R)
⌋

, 0
}

, as in the statement of the theorem. Now, for any

codeword Eval(g) ∈ Cm,+ of weight w, we shall first calculate the number, Nw(g), of

codewords Eval(h) ∈ Cm,+ such that supp(Eval(g)) ⊆ supp(Eval(h)).

Suppose that for any weight w, the integer u = u(w) is the smallest integer such

that wt(Eval(g)) = w ≥ 2m−1−u. Note that for any polynomial g as above of weight

w, the number of codewords in the code produced by shortening Cm,+ at the indices in

supp(Eval(g)), equals Nw(g). Now, since dim(Cm,+) = (m−1
≤rm

), and from the fact that

w ≥ 2m−1−u, we obtain by an application of Lemmas 5.6.5 and 6.3.5, that

Nw(g) ≤ exp2

((
m− 1
≤ rm

)
−
(

m− 1− u
≤ rm

))
(6.6)

=: Mu(w).
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Let H(1)
m denote the largest (1, ∞)-RLL subcode of Cm, and let R

(1)
m (C) denote its

rate. Then,

∣∣∣H(1)
m

∣∣∣ ≤ ∑
g:Eval(g)∈Cm,+

Nw(g)

(a)
≤

2m−1

∑
w=2m−1−rm

Am−1,rm(w)Mu(w)

(b)
≤
{

2m−2

∑
w=2m−1−rm

A(w)Mu(w)

}
+

1
2
· exp2

((
m− 1
≤ rm

))
· exp2

((
m− 1
≤ rm

)
−
(

m− 2
≤ rm

))
(c)
≤
{

2m−2

∑
w=2m−1−rm

A(w)Mu(w)

}
+

1
2
· exp2

((
m− 1
≤ rm

)
+

(
m− 2
≤ rm

))
(d)
≤
{

rm−1

∑
i=1

A
([

2m−2−i : 2m−1−i
])
· exp2

((
m− 1
≤ rm

)
−
(

m− 2− i
≤ rm

))}
+

1
2
· exp2

((
m− 1
≤ rm

)
+

(
m− 2
≤ rm

))
, (6.7)

where, for ease of reading, we write A(w) := Am−1,rm(w), in inequalities (b)–(d). Fur-

ther, A([a : b]) is shorthand for ∑b
w=a A(w). Here,

(a) follows from (6.6), and

(b) holds due to the following fact: since the all-ones codeword 1 is present in Cm,+ =

RM(m− 1, rm), it implies that A(w) = A(2m−1 − w), i.e., that the weight distri-

bution of Cm,+ is symmetric about the weight w = 2m−2. Therefore,

A
([

2m−2 + 1 : 2m−1
])
≤ 1

2
· exp2

(
m− 1
≤ rm

)
. (6.8)

Next,

(c) follows from the fact that for positive integers n, k with n > k:

(
n− 1

k

)
+

(
n− 1
k− 1

)
=

(
n
k

)
.
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Picking n = m− 1, we obtain that for k ≤ m− 2,

(
m− 1

k

)
−
(

m− 2
k

)
=

(
m− 2
k− 1

)
,

and hence that (
m− 1
≤ rm

)
−
(

m− 2
≤ rm

)
<

(
m− 2
≤ rm

)
, and

(d) holds again by (6.6).

It is clear that a simplification of (6.7) depends crucially on good upper bounds on the

weight distribution function. Recall the notation Rm,+ :=
(m−1
≤rm)

2m−1 . We now use the result

in Lemma 6.3.6, to get that for 1 ≤ i ≤ rm − 1,

Am−1,rm

([
2m−2−i : 2m−1−i

])
≤

2m−1−i

∑
w=2m−2−i

exp2

(
2m−1 · Rm,+ · hb

( w
2m−1

))
(e)
≤

2m−1−i

∑
w=2m−2−i

exp2

(
2m−1 · Rm,+ · hb(2

−i)
)

= exp2

(
2m−1 · Rm,+ · hb(2

−i) + o(2m)
)

:= Bi(m), (6.9)

where inequality (e) above follows from the fact that the binary entropy function,

hb(p), is increasing for arguments p ∈
[
0, 1

2

)
. Therefore, putting (6.9) back in (6.7),

we get that

2mR
(1)
m (C) = log2

∣∣∣H(1)
m

∣∣∣
≤
(

m− 1
≤ rm

)
+ log2

{
1
2
· exp2

(
m− 2
≤ rm

)
+

rm−1

∑
i=1

Bi(m) · exp2

(
−
(

m− 2− i
≤ rm

))}

=

(
m− 1
≤ rm

)
+ log2 (α(m) + β(m)) , (6.10)
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where we define

α(m) :=
1
2
· exp2

(
m− 2
≤ rm

)
, and

β(m) :=
rm−1

∑
i=1

Bi(m) · exp2

(
−
(

m− 2− i
≤ rm

))
. (6.11)

In Lemma that appears after the end of this proof, we show that for all δ ∈ (0, 1)

sufficiently small and for m sufficiently large, we have

β(m) ≤ exp2

(
2m−1R ·

(
3
4
+ δ

)
+ o(2m)

)
=: θ(m). (6.12)

Now, using Lemma 5.6.2, we have

lim
m→∞

1
2m

(
m− 2
≤ rm

)
=

R
4

.

Hence, for small δ ∈ (0, 1), and for m large enough,

(
m− 2
≤ rm

)
≤ (1 + δ) · 2m−2 · R.

Therefore, we get that

α(m) ≤ exp2

(
(1 + δ) · 2m−2 · R

)
=: η(m). (6.13)

Now, substituting (6.12) and (6.13) in (6.10), we get that

2mR
(1)
m (C) ≤

(
m− 1
≤ rm

)
+ log2 (η(m) + θ(m)) . (6.14)
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Putting everything together, we see that

R(1)(C) = lim sup
m→∞

R
(1)
m (C)

≤ lim
m→∞

1
2m

[(
m− 1
≤ rm

)
+ log2 (η(m) + θ(m))

]
(p)
≤ lim

m→∞

1
2m

[(
m− 1
≤ rm

)
+ log2 (2 · θ(m))

]
(q)
=

R
2
+ lim

m→∞

1
2m · log2 θ(m)

=
R
2
+

3R
8

+
δR
2

=
7R
8

+
δR
2

. (6.15)

Note that inequality (p) follows from the fact for any R ∈ (0, 1), η(m) ≤ θ(m) holds for

all sufficiently small δ > 0. Further, equation (q) is valid because limm→∞
1

2m (
m−1
≤rm

) = R
2 ,

by Lemma 5.6.2. Since (6.15) holds for all δ > 0 sufficiently small, we can let δ → 0,

thereby obtaining that

R(1)(C) ≤ 7R
8

.

Moreover, since for any m ≥ 1, we have that H(1)
m ⊆ S(2m)

(1,∞)
, with limm→∞

log2

∣∣∣S(2m)
(1,∞)

∣∣∣
2m =

κ1, the inequality R(1)(C) ≤ κ1 holds.

We now prove inequality (6.12), which is required to complete the proof of Theorem

6.2.2. Recall that we define

α(m) :=
1
2
· exp2

(
m− 2
≤ rm

)
, and

β(m) :=
rm−1

∑
i=1

Bi(m) · exp2

(
−
(

m− 2− i
≤ rm

))
,

for all m ≥ 1, where rm = max
{⌊

m
2 +

√
m

2 Q−1(1− R)
⌋

, 0
}

.
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Lemma 6.3.7. We have that for m sufficiently large,

β(m) ≤ exp2

(
2m−1R ·

(
3
4
+ δ

)
+ o(2m)

)
.

Proof. We start with the expression

β(m) = 2o(2m) ·
rm−1

∑
i=1

exp2

(
2m−1 · Rm,+ · hb(2

−i)−
(

m− 2− i
≤ rm

))
(6.16)

We will split the sum
rm−1

∑
i=1

into two parts:
tm
∑

i=1
and

rm−1
∑

i=tm+1
, where tm := ⌊m1/3⌋. For

i ∈ [tm + 1 : rm − 1], we have

2m−1 · Rm,+ · hb(2
−i)−

(
m− 2− i
≤ rm

)
≤ 2m−1 · Rm,+ · hb(2

−i) = o(2m),

since hb(2−i) ≤ hb(2−tm−1), and hb(2−tm−1)
m→∞−−−→ 0, by the continuity of entropy.

Thus, the contribution of each term of the sum
rm−1

∑
i=tm+1

is 2o(2m), and since there are at

most rm = O(m) terms in the sum, the total contribution from the sum is 2o(2m).

Turning our attention to i ∈ [tm], we note first that for m large enough, we have

Rm,+ ≤ R(1 + ϵ), for ϵ ∈ (0, 1) suitably small. Also, we write

2m−1 · Rm,+·hb(2
−i)−

(
m− 2− i
≤ rm

)
≤ 2m−1 ·

[
R(1 + ϵ) · hb(2

−i)− 2−(i+1) · 1
2m−2−i

(
m− 2− i
≤ rm

)]
. (6.17)

By Lemma 5.6.2, we obtain that 1
2m−2−i (

m−2−i
≤rm

) converges to R for all i ∈ [tm]. In fact,

with a bit more effort, we can show that this convergence is uniform in i. Indeed, since

i ≤ tm, by virtue of (5.4), we have |rm− rm−2−i| ≤ tm+2
2 +

√
tm+2
2 |Q−1(1−R)|+ 1 =: νm.

Using the notation in the proof of Lemma 5.6.2, we have 1
2m−2−i (

m−2−i
≤rm

) = Pr[Sm−2−i ≤
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rm]. Thus, analogous to (5.5), we have for all sufficiently large m,

Pr[Sm−2−i ≤ Q−1(1− R)− νm
1
2
√

m− 2− tm
] ≤

Pr[Sm−2−i ≤ rm] ≤

Pr[Sm−2−i ≤ Q−1(1− R) +
νm

1
2
√

m− 2− tm
].

Now, we apply the Berry-Esseen theorem (see e.g., [69, Theorem 3.4.17]) which, in this

case, asserts that
∣∣Pr[Sm ≤ x]− Pr[Z ≤ x]

∣∣ ≤ 3/
√

m, for all x ∈ R and positive integers

m, where Z ∼ N(0, 1). Thus,
∣∣Pr[Sm−2−i ≤ x]− Pr[Z ≤ x]

∣∣ ≤ 3√
m−2−i

≤ 3√
m−2−tm

holds for all x ∈ R and i ∈ [tm]. This yields

Pr[Z ≤ Q−1(1− R)− νm
1
2
√

m− 2− tm
]− 3√

m− 2− tm

≤ Pr[Sm−2−i ≤ rm]

≤ Pr[Z ≤ Q−1(1− R) +
νm

1
2
√

m− 2− tm
] +

3√
m− 2− tm

.

Since tm and νm are both o(
√

m), we deduce that, as m → ∞, Pr[Sm−2−i ≤ rm] =

1
2m−2−i (

m−2−i
≤rm

) converges to R uniformly in i ∈ [tm].

Hence, for small ϵ ∈ (0, 1) and m large enough, we have that for all i ∈ [tm] that

1
2m−2−i

(
m− 2− i
≤ rm

)
≥ (1− ϵ)R,

so that, carrying on from (6.17), we have that

R(1 + ϵ) · hb(2
−i)− 2−(i+1) · 1

2m−2−i

(
m− 2− i
≤ rm

)
≤ R

[
(1 + ϵ) · hb(2

−i)− 2−(i+1) · (1− ϵ)
]

.

(6.18)

Now, we claim that for any i ∈ N, the expression within square brackets above can be
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bounded above as:

(1 + ϵ) · hb(2
−i)− 2−(i+1) · (1− ϵ) ≤ 3

4
+ 2ϵ, (6.19)

Modulo the proof of this claim, we proceed to put all inequalities together. Recall that

we split the sum
rm−1

∑
i=1

in (6.16) into two parts:
tm
∑

i=1
and

rm−1
∑

i=tm+1
, where tm := ⌊m1/3⌋.

Given an arbitrarily small δ > 0, setting ϵ = δ/2, we obtain via (6.17)–(6.19) that, for

all sufficiently large m, the contribution from the sum ∑tm
i=1 is at most

m1/3 · exp2

(
2m−1R ·

(
3
4
+ δ

))
.

We noted earlier that the contribution from the sum ∑rm−1
i=tm+1 is exp2(o(2

m)). Therefore,

the overall sum
rm−1

∑
i=1

in (6.16) can be bounded above, for all sufficiently large m, by

2m1/3 · exp2

(
2m−1R ·

(
3
4
+ δ

))
,

Consequently,

β(m) ≤ exp2

(
2m−1R ·

(
3
4
+ δ

)
+ o(2m)

)
=: θ(m).

To finish the proof of this lemma, we prove inequality (6.19).

Firstly, we note that the expression on the left of (6.19) obeys, for i ≥ 1,

(1 + ϵ) · hb(2
−i)− 2−(i+1) · (1− ϵ) = hb(2

−i)− 2−(i+1) + ϵ
(

hb(2
−i) + 2−(i+1)

)
≤ hb(2

−i)− 2−(i+1) + 2ϵ. (6.20)

Now, consider the function f (x) = hb(2−x)− 2−(x+1), where x ∈ [0, ∞). By taking

the derivative with respect to x on both sides, we get

f ′(x) = (2−x ln 2) ·
[

1
2
− log2

(
1− 2−x

2−x

)]
.
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The term within square brackets above is positive when x ∈
(

0, log2(1 +
√

2)
)

, and

is negative for x ∈
(

log2(1 +
√

2), ∞
)

. Importantly, this implies that f is decreasing

in the interval [2, ∞). Furthermore, we note that f (1) = hb(
1
2) −

1
4 = 3

4 , and f (2) =

hb(
1
4)−

1
8 ≈ 0.68 < f (1). Hence, f is decreasing over integers i ∈N.

With this, we obtain that the right side of the inequality in (6.20) is at most 3
4 +

2ϵ.

6.3.3 Alternative Coordinate Orderings

Throughout the previous subsections, we have assumed that the coordinates of the

RM codes are ordered according to the standard lexicographic ordering. In this sub-

section, we shall address the question of whether alternative coordinate orderings al-

low for larger rates of linear (d, ∞)-RLL constrained subcodes of RM codes of rate R,

as compared to the upper bound of R
d+1 derived for RM codes under the lexicographic

coordinate ordering, in Theorem 6.2.1.

First, we consider a Gray ordering of coordinates of the code RM(m, r). In such an

ordering, consecutive coordinates b = (b1, . . . , bm) and b′ = (b′1, . . . , b′m) are such that

for some bit index i ∈ [m], bi ̸= b′i , but bj = b′j, for all j ̸= i. In words, consecutive

coordinates in a Gray ordering, when represented as m-tuples, differ in exactly one bit

index. Note that there are multiple orderings that satisfy this property. Indeed, Gray

orderings correspond to Hamiltonian paths (see, for example, [65], Chap. 10) on the

m-dimensional unit hypercube.

In what follows, we work with a fixed sequence of Gray orderings defined as fol-

lows: let (πG,m)m≥1 be a sequence of permutations, with πG,m : [0 : 2m − 1] → [0 :

2m− 1], for any m ≥ 1, having the property that B(πG,m(j)) differs from B(πG,m(j− 1))

in exactly one bit index, for any j ∈ [1 : 2m − 1].

Now, as before, fix a sequence of codes
{
Ĉm = RM(m, rm)

}
m≥1 of rate R ∈ (0, 1).

Note that for large enough m, we have that rm ≤ m − 1. We again use the notation
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Km := ( m
≤rm

) to denote the dimension of Ĉm. We then define the sequence of Gray-

ordered RM codes
{
CG

m
}

m≥1, via

CG
m :=

{
(cπG,m(0), cπG,m(1), . . . , cπG,m(2m−1)) : (c0, c1, . . . , c2m−1) ∈ Ĉm

}
.

Clearly, the sequence of codes
{
CG

m
}

m≥1 is also of rate R ∈ (0, 1). In order to obtain

an upper bound on the rate of the largest linear (d, ∞)-RLL subcode of the code CG
m , as

in Theorem 6.2.1, we shall again work with the information set Im,rm (see (6.4) for the

definition of the set Im,r of coordinates of RM(m, r)).

Analogous to (6.5), we define the set

ΓG
m := {s ∈ [0 : 2m − 1] : B(πG,m(s)) ∈ Im,rm , but B(πG,m(s + 1)) /∈ Im,rm}. (6.21)

to be the collection of right end-points of runs of coordinates in the information set

Im,rm , where the coordinates are now ordered according to the fixed Gray ordering.

We use the convention that when s = 2m− 1, B(πG,m(s + 1)) is defined to be a dummy

symbol ‘×’ that does not belong to Im,rm . The number of such runs is
∣∣ΓG

m
∣∣. Note now

that unlike in (6.5), it is possible that 2m − 1 ∈ ΓG
m, since, depending on the specific

Gray coordinate ordering chosen, it is possible that B(πG,m(2m − 1)) ∈ Im,rm .

We now state and prove a lemma analogous to Lemma 6.3.4:

Lemma 6.3.8. Under a fixed Gray ordering defined by πG
m, the inequality

∣∣ΓG
m,rm

∣∣ ≤ ( m
rm+1)+ 1

holds, for 0 ≤ rm ≤ m− 1.

Proof. For any s ∈ [0 : 2m − 2] that belongs to ΓG
m, we have wt(B(πG,m(s))) ≤ rm, but

wt(B(πG,m(s + 1))) ≥ rm + 1. In fact, since consecutive coordinates differ in exactly

one bit index in the Gray ordering, it must be the case that wt(B(πG,m(s + 1))) =

rm + 1. Thus, the number of integers s ∈ [0 : 2m− 2] belonging to ΓG
m is bounded above

by ( m
rm+1), which is the number of coordinates whose binary representation has weight

exactly rm + 1. In order to account for the possibility that 2m − 1 ∈ ΓG
m, we state the

overall upper bound on the number of runs as ( m
rm+1) + 1.
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With Lemma 6.3.8 established, we now prove Theorem 6.2.3. Our proof strategy is

similar to that for Theorem 6.2.1: for a given code CG
m , we first calculate a lower bound

on the number of (d + 1)-tuples of consecutive coordinates, ordered according to the

fixed Gray ordering, in the information set Im,rm . Via Proposition 6.3.1, this gives us

an upper bound on the rate of any linear (d, ∞)-RLL subcode of CG
m . We then let the

blocklength go to infinity, to obtain our desired result.

Proof of Theorem 6.2.3. Similar to the proof of Theorem 6.2.1, the calculation of the over-

all number, tG
m, of disjoint (d + 1)-tuples of consecutive coordinates in Im,rm , for large

enough m, results in

tG
m ≥

Km

d + 1
−
(

m
rm + 1

)
− 1.

Note that here too, as in the proof of Theorem 6.2.1, we use the notation Km to denote

the dimension of CG
m . Again, using Proposition 6.3.1, it follows that the dimension of

any linear (d, ∞)-RLL subcode H(d)
G ⊆ CG

m is at most Km − dtG
m. Now, recalling the

definition of R(d)
(CG), from equation (6.2), we see that

R
(d)

(CG) ≤ lim sup
m→∞

Km − dtG
m

2m

≤ lim sup
m→∞

Km − dKm
d+1 + d · ( m

rm+1) + d
2m

≤ lim
m→∞

Km
d+1 + d · ( m

⌊m
2 ⌋) + d

2m

=
R

d + 1
,

where the last equality holds for reasons similar to those in the proof of Theorem 6.2.1.

Next, we shift our attention to π-ordered RM codes {Cπ
m}m≥1, defined by the se-

quence of arbitrary permutations (πm)m≥1, with πm : [0 : 2m − 1] → [0 : 2m − 1] (see

the discussion preceding Theorem 6.2.4 in Section 8.4). Note that the code Cπ
m has the
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same dimension Km. as the code Ĉm = RM(m, rm). Also recall the definition of H(d)
π

being the largest linear (d, ∞)-RLL subcode of Cπ
m.

We shall now prove Theorem 6.2.4. The proof goes as follows: we first show that

for large m, for almost all coordinate permutations πm, the first block of Km(1 + αm)

coordinates in the π-ordered code Cπ
m contains an information set Jm,rm , where αm → 0

as m → ∞. This then allows us to arrive at a lower bound on the number of disjoint

(d + 1)-tuples of consecutive coordinates in this information set Jm,rm . Again, using

Proposition 6.3.1, we arrive at the desired upper bound on the rate of any (d, ∞)-RLL

constrained linear subcode of Cπ
m, for almost all permutations πm.

Proof of Theorem 6.2.4. We wish to prove that for “most” orderings, and for large m, the

rate ofH(d)
π is bounded above by R

d+1 + ϵm, where ϵm
m→∞−−−→ 0.

To this end, we first make the observation that the sequence of Reed-Muller codes{
Ĉm = RM(m, rm)

}
m≥1 achieves a rate R over the BEC, under block-MAP decoding

too (see [36] and [66]). Hence, for large enough m, the (linear) RM code Ĉm can correct

erasures that are caused by a BEC(1−R−γm), with γm > 0, and γm
m→∞−−−→ 0. This then

means that for large m, Ĉm can correct 2m(1− R− γm)− c ·
√

2m(1− R− γm) erasures,

with high probability (see Lemma 15 of [53]), for c > 0 suitably small. Finally, from

Corollary 18 of [53], it then holds that for large enough m, any collection of 2mR(1 +

βm) columns of GLex(m, rm), chosen uniformly at random, must have full row rank,

Km:= ( m
≤rm

), with probability 1− δm, with βm, δm > 0 and βm, δm
m→∞−−−→ 0.

In other words, the discussion above implies that for large enough m, a collection

of Km(1 + αm) coordinates, chosen uniformly at random, contains an information set,

with probability 1− δm, where, again, αm > 0, with αm
m→∞−−−→ 0. An equivalent view

of the above statement is that for large enough m, for a 1− δm fraction of the possible

permutations πm : [0 : 2m − 1]→ [0 : 2m − 1], the first block of Km(1 + αm) coordinates

of the code Cπ
m, contains an information set, Jm,rm , with dim(Cπ

m) = Km. Now, within

these “good” permutations, since |Jm,rm | = Km, it follows that the number of runs,

|Γπ
m|, of consecutive coordinates that belong to Jm,rm , obeys |Γπ

m| ≤ Kmαm + 1, with Γπ
m

defined similar to equation (6.21). This is because the number of runs, |Γπ
m|, equals the
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number of coordinates s, such that s ∈ Jm,rm , but s + 1 /∈ Jm,rm . Hence, accounting for

the possibility that the last coordinate in the Km(1+ αm)-block belongs to Jm,rm , we get

that the number of such coordinates s is at most Km(1 + αm) + 1− Km, which equals

Kmαm + 1.

Hence, the overall number, tπ
m, of disjoint (d + 1)-tuples of consecutive coordinates

in Jm,r, satisfies (see the proof of Theorem 6.2.1)

tπ
m ≥

Km

d + 1
− Kmαm − 1,

for a 1− δm fraction of permutations πm. Again, applying Proposition 6.3.1, we have

that for a 1 − δm fraction of permutations, with δm
m→∞−−−→ 0, the rate of the largest

(d, ∞)-RLL subcode obeys, for m large,

log2

∣∣∣H(d)
π

∣∣∣
2m ≤ Km − dtπ

m
2m

≤
Km − dKm

d+1 + dKmαm + d
2m

=
R

d + 1
+ ϵm,

where ϵm
m→∞−−−→ 0, with the last equality following from the fact that limm→∞

Km
2m = R.

The theorem thus follows.

6.4 Conclusions and Directions for Future Work

In this chapter, we derived upper bounds on the rates of (d, ∞)-RLL constrained sub-

codes of Reed-Muller (RM) codes. We first fixed the coordinate ordering to be the lexi-

cographic ordering and derived upper bounds on the rates of the largest linear (d, ∞)-

RLL subcodes of RM codes of rate R, thereby showing that the linear constrained sub-

codes explicitly constructed in Chapter 5 are essentially rate-optimal. Furthermore,

a novel upper bound on the rate of general (1, ∞)-RLL subcodes was derived using
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properties of the weight distribution of RM codes. We next considered other coordi-

nate orderings and showed that for most orderings, almost the same upper bound on

the rates of linear subcodes that was derived for the lexicographic ordering still holds,

so long as the blocklength of the RM code is large enough.

There is certainly scope for future work along the lines explored in this chapter.

Firstly, following the close relationship between the sizes of (1, ∞)-RLL subcodes and

the weight distributions of RM codes established in this work, a more sophisticated

analysis of achievable rates can be performed with the availability of better lower bounds

on the weight distributions of RM codes. Likewise, sharper upper bounds on the

weight distributions of RM codes will also lead to better upper bounds on the rate

of any (1, ∞)-RLL subcodes of a certain canonical sequence of RM codes. It would also

be of interest to derive good upper bounds on the rates of general (d, ∞)-RLL subcodes

of RM codes, via weight distributions or otherwise.



Chapter 7

Counting Constrained Codewords in

Binary Linear Codes

“When someone seeks,” said Siddhartha, ”then it easily happens that his eyes see

only the thing that he seeks, and he is able to find nothing [. . . ] Seeking means:

having a goal. But finding means: being free, being open, having no goal.”

Hermann Hesse, Siddhartha: An Indian Novel, 1922

7.1 Introduction

In the previous chapter, we considered the construction of explicit constrained codes,

using subcodes of RM codes, over input-constrained binary-input DMCs. The key idea

there was that if the unconstrained channel were symmetric, there exist linear codes

such as RM codes, polar codes, and LDPC codes that achieve either the capacity or

rates very close to the capacity of the channel (see [35,38,40]). In particular, this means

that constrained subcodes of such linear codes also enjoy vanishing error probabili-

ties over such binary-input memoryless symmetric (BMS) channels, in the limit as the

blocklength goes to infinity.

Motivated by such considerations, in this chapter, we shall concern ourselves with

the computation of the sizes of (arbitrarily) constrained subcodes of general linear

96
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codes. Our approach makes use of a simple identity from the Fourier analysis of

Boolean functions, namely, Plancherel’s Theorem, which transforms our counting prob-

lem to one in the space of the dual code. An immediate advantage of this approach is

that the dimension of the vector space over which we count, which is the minimum

of the dimensions of the linear code and its dual, is always bounded above by half

the blocklength of the code. Our study reveals the somewhat surprising fact that for

many constraints, the Fourier transform of the indicator function of the constraint is

computable, either analytically, or via efficient recursive procedures—an observation

that can be of independent theoretical interest. We show, using specific examples of

constraints, that our approach can yield not just the values of the sizes of constrained

subcodes of specific linear codes, but also interesting insights into the construction of

linear codes with a prescribed number of constrained codewords.

7.2 Some Approaches from Prior Art

It is possible, using random linear coding schemes, to show the existence of linear

codes of rate R ∈ (0, 1), the rates of whose constrained subcodes is at least R + κ − 1,

in the limit as the blocklength goes to infinity, where κ is the noiseless capacity of the

constraint (see Chapter 3 of [2]). Exactly the same existential lower bound was derived

for the rates of constrained subcodes of cosets of linear codes of rate R in [47] (see also

the early work of [96]). To the best of our knowledge, there do not exist works besides

these that investigate the rates of generic constrained subcodes (or subcodes of cosets)

of linear codes.

There however exists a lot of literature on the problem of determining the sizes

of constant-weight subcodes of linear codes via the weight distribution of the code

(see the book [58] for results on the weight distributions of several well-known linear

codes), and on constant-composition subcodes of linear codes (see [97] and the refer-

ences therein).

A closely-related line of investigation is on the largest rates of constrained linear
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codes, and derivations of such rates in the context of specific runlength limited (RLL)

constraints can be found in [61].

7.3 Preliminaries

7.3.1 Notation

For a given length n, we use the notation Wi := {x ∈ {0, 1}n : w(x) = i}.

7.3.2 Block Codes and Constrained Sequences

We recall, from Section 4.4.2 of Chapter 5, the definitions of block codes and linear

codes over F2. Like in Chapter 5, our interest is in constraints over binary sequences

[2], which are represented by sets A ⊆ {0, 1}n of binary words. We call the sequences

in A as constrained sequences, and refer to a block code C, all of whose codewords lie

in A, as a “constrained code”. Note that we make no further assumption about the

constrained system (such as it being finite-type, almost-finite-type, irreducible, etc.).

Given such a collection of sets of constrained sequences {An}n≥1 for each blocklength

n ≥ 1, where An ⊆ {0, 1}n, for all n, the noiseless capacity (see Chapter 3 of [2]) of the

constraint is defined as

C0 := lim sup
n→∞

log2 |An|
n

.

Special cases, κd and κd,k, of the noiseless capacity, were considered in the previous

chapters.

7.3.3 Fourier Expansions of Functions

Consider functions f : {0, 1}n → R, mapping x = (x1, . . . , xn) ∈ {0, 1}n to f (x) ∈ R.

If the range of f is {0, 1}, then f is called a Boolean function. Now, given any function

f : {0, 1}n → R and a vector s = (s1, . . . , sn) ∈ {0, 1}n, we define the Fourier coefficient
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of f at s as

f̂ (s) :=
1
2n ∑

x∈{0,1}n

f (x) · (−1)x·s.

The function f̂ is known as the Fourier transform (sometimes called the Hadamard

transform) of f . Moreover, the functions (χs : s ∈ {0, 1}n), where χs(x) := (−1)x·s,

form a basis for the vector space V of functions f : {0, 1}n → R. If we define an inner

product ⟨·, ·⟩ over the vector space V, as follows:

⟨ f , g⟩ :=
1
2n ∑

x∈{0,1}n

f (x)g(x),

for functions f , g ∈ V, we also have that the basis functions (χs : s ∈ {0, 1}n) are or-

thonormal, in that

⟨χs, χs′⟩ =

1, if s = s′,

0, otherwise.

For more details on the Fourier analysis over Fn
2 , we refer the reader to [70]. In this

chapter, we shall make use of Plancherel’s Theorem from Fourier analysis, which is

recalled below, without proof (see [70, Chapter 1, p. 26]).

Theorem 7.3.1 (Plancherel’s Theorem). For any f , g ∈ {0, 1}n → R, we have that

⟨ f , g⟩ = ∑
s∈{0,1}n

f̂ (s)ĝ(s).

7.4 Main Theorem

Consider an [n, k] linear code C. Suppose that we are interested in computing the num-

ber of codewords c ∈ C, each of which satisfies a certain property, which we call a

constraint. Let A ⊆ {0, 1}n denote the set of length-n words that respect the con-

straint. We let N(C;A) denote the number of such constrained codewords in C. We
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can then write

N(C;A) = ∑
c∈C

1A(c). (7.1)

Observe that the summation in (7.1) is over a set of size 2k, which could be quite large,

especially when k > n/2. Our interest is in obtaining insight into the summation

above, by employing a simple trick from the Fourier expansions of Boolean functions.

For a linear code C, we denote its dual code by C⊥.

Theorem 7.4.1. Given a linear code C of blocklength n and a set A ⊆ {0, 1}n, we have that

N(C;A) = |C| · ∑
s∈C⊥

1̂A(s).

Proof. The proof is a straightforward application of Plancherel’s Theorem. Observe

that

N(C;A) = ∑
x∈{0,1}n

1A(x) · 1C(x) = 2n · ∑
s∈{0,1}n

1̂A(s) · 1̂C(s). (7.2)

Now, via arguments similar to Lemma 2 in Chapter 5, p. 127, of [58], we have that

1̂C(s) =


|C|
2n , if s ∈ C⊥,

0, otherwise.
(7.3)

Plugging (7.3) back in (7.2), we obtain the statement of the theorem.

Theorem 7.4.1 provides an alternative approach to addressing our problem of count-

ing constrained codewords in linear codes. In particular, note that if C had large dimen-

sion, i.e., if k > n/2, then, it is computationally less intensive to calculate the number

of constrained codewords using Theorem 7.4.1, provided we knew the Fourier coeffi-

cients 1̂A(s), since dim
(
C⊥
)
= n− k < n/2, in this case. Additionally, if the structure

of the Fourier coefficients is simple to handle, we could also use Theorem 7.4.1 to con-

struct linear codes that have a large (or small) number of constrained codewords, or to
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obtain estimates of the number of constrained codewords in a fixed linear code.

Below, we discuss the connection between Theorem 7.4.1 and the well-known MacWilliams’

identities for linear codes [71]. This material is well-known, and we provide it for com-

pleteness.

Consider the simple constraint that admits only sequences having a fixed weight

i ∈ [0 : n], where n is the blocklength of the code. Note that in this case, the set of

constrained sequences is A = Wi. By applying Theorem 7.4.1 to this constraint, for a

given linear code C, we obtain the well-known MacWilliams’ identities [71] for linear

codes. We use the notation ai(C) for the number of codewords of weight i ∈ [0 : n] in

C, which equals N(C; Wi), following the notation of Theorem 7.4.1.

Theorem 7.4.2 (MacWilliams’ identities). The equality

ai(C) =
1∣∣C⊥∣∣ n

∑
j=0

K(n)
i (j) · aj(C⊥).

holds. Here, K(n)
i (j) = ∑i

t=0(−1)t(j
t)(

n−j
i−t) is the ith-Krawtchouk polynomial, for the length n.

Proof. The proof simply uses the fact that 1̂Wi(s) =
K(n)

i (w(s))
2n . By simplifying the sum-

mation in Theorem 7.4.1, and by using the fact that |C| ·
∣∣C⊥∣∣ = 2n, we obtain the

required result.

In the rest of this chapter, we shall look at specific examples of constraints and apply

the above theorem. In particular, we shall consider the [2m − 1, 2m − 1 − m] binary

Hamming code, for m ≥ 1 and the binary Reed-Muller codes. Since the constraints

we work with are sensitive to the ordering of coordinates of the code, in the sense that

a permutation of the coordinates can transform a codeword that does not satisfy the

constraint into one that does, we shall first fix a canonical ordering of coordinates for

the codes that we analyze. For the binary Hamming code, we assume that a parity-

check matrix HHam is such that HHam[i] = Bm(i), for 1 ≤ i ≤ 2m − 1.

Recall, from Chapter 5, that the Reed-Muller (RM) family of codes is known to

achieve the capacities of BMS channels under bit-MAP decoding [40] (see also [36]).
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Thus, RM codes are linear codes that offer the maximum resilience to symmetric,

stochastic noise, for a given rate. We refer the reader to 5.4.3 for more details on this

family of codes. In this chapter, we use the convention that the coordinates of RM(m, r)

are written as binary m-tuples that are ordered according to the standard lexicographic

ordering, i.e., the ith coordinate from the start is the m-tuple Bm(i− 1), for 1 ≤ i ≤ 2m.

7.5 Applications: Explicitly Computable Fourier Coeffi-

cients

In this section, we shall work with select constraints for which the Fourier coefficients

of the indicator function that a word satisfies the constraint, are explicitly (or, analyti-

cally) computable.

7.5.1 2-Charge Constraint

We first consider a special kind of a spectral null constraint [72], [73]. This constraint

that we shall work with is the so-called 2-charge constraint (see Section 1.5.4 in [2]),

whose sequences have a spectral null at zero frequency. The 2-charge constraint admits

only sequences y ∈ {−1,+1}n, whose running sum ∑r
i=1 yi, for any 1 ≤ r ≤ n, obeys

0 ≤ ∑r
i=1 yi ≤ 2. To any sequence x ∈ {0, 1}n, we associate (in a one-one manner) the

sequence y = ((−1)x1 , . . . , (−1)xn) ∈ {−1,+1}n. We let S2 denote the set of sequences

x ∈ {0, 1}n such that y = ((−1)x1 , . . . , (−1)xn) is 2-charge constrained. Thus, the set of

constrained sequences of interest to us is A = S2. Figure 7.1 shows a state transition

graph for sequences in the set S2, in that the binary sequences that lie in S2 can be read

off the labels of edges in the graph:

0 1 2
0 0

11

Figure 7.1: State transition graph for sequences in the set S2.
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We assume that the initial state is v0 = 0. Since labels of paths in the state transition

graph (beginning at state 0) correspond to binary sequences x ∈ S2, we denote by

xi the label of the ith edge in the path. Observe that x1 = 0, by our choice of initial

state. Further, for a given path in the graph, we let vi denote the ith state, which is the

terminal state of the ith edge.

Further, we claim that |S2| = 2⌊
n
2⌋. To see this, observe that for any x ∈ S2, the state

v2i−1, for any 1 ≤ i ≤ n, equals 1. Owing to this fact, the label of the jth edge, xj, in

any path in the graph G in Figure 9.1, can be either 0 or 1, when j = 2i, and is fixed to

be exactly one of 0 or 1, when j = 2i + 1, based on the label of the (j− 1)th edge, for

1 ≤ j ≤ n. In particular, it holds that x2i + x2i+1 = 1, for all 1 ≤ i ≤
⌊

n−1
2

⌋
, with x1

fixed to be 0.

We now state a lemma that completely determines the Fourier transform of 1S2 .

We define the set of vectors B =
{

b0, b1, . . . , b⌈ n
2⌉−1

}
, where b0 = 10n−1 and for

1 ≤ i ≤
⌈n

2

⌉
− 1, the vector bi is such that bi,j = 1, for j ∈ {2i, 2i + 1}, and bi,j = 0,

otherwise. For example, when n = 5, we have that B = {10000, 01100, 00011}. Let

VB = span(B). In what follows, we assume that n ≥ 3.

Lemma 7.5.1. For n ≥ 3 and for a =
(

a0, a1, . . . , a⌈ n
2⌉−1

)
∈ {0, 1}⌈

n
2⌉, consider s =

⌈ n
2⌉−1

∑
i=0

ai · bi (where the summation is over Fn
2 ). It holds that

1̂S2 (s) = 2⌊
n
2⌋−n · (−1)w(a)−a0 .

Further, for s /∈ VB, we have that 1̂S2 (s) = 0.

Proof. First, we note that for any s ∈ {0, 1}n,

1̂S2(s) =
1
2n ∑

x∈{0,1}n

1S2(x) · (−1)x·s

= 2−n ·
(
#{x ∈ S2 : ws(x) is even} − #{x ∈ S2 : ws(x) is odd}

)
. (7.4)

Now, for s = b0, note that since all words x ∈ S2 have x1 = 0, we obtain that 1̂S2(b0) =
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2−n · |S2| = 2⌊
n
2⌋−n.

Further, recall that since v2i−1 = 1, for any 1 ≤ i ≤ n, we have that x2i + x2i+1 = 1

(over F2). Hence, we see that for s = bj, for 1 ≤ j ≤
⌈n

2

⌉
− 1, it is true that #{x ∈ S2 :

ws(x) is odd} = |S2| = 2⌊
n
2⌋ and #{x ∈ S2 : ws(x) is even} = 0. Substituting in (7.4),

we get that 1̂S2(bj) = −2⌊
n
2⌋−n for all 1 ≤ j ≤

⌈n
2

⌉
− 1. Furthermore, we claim that

1̂S2(0
n) = 2⌊

n
2⌋−n. To see this, note that

1̂S2(0
n)=

1
2n ∑

x∈S2

1 =
|S2|
2n = 2⌊

n
2⌋−n.

Now, suppose that for some s1, s2 ∈ VB, we have 1̂S2(s1) = (−1)i1 · 2⌊
n
2⌋−n and

1̂S2(s2) = (−1)i2 · 2⌊
n
2⌋−n, for some i1, i2 ∈ {0, 1}, with ws1(x) being even for all x ∈

S2, if i1 = 0, and odd otherwise (similar arguments hold for ws2(x)). Hence, it can

be checked that if i1 = i2, it holds that ws1+s2(x) is even, and hence, 1̂S2(s1 + s2) =

2⌊
n
2⌋−n = (−1)i1+i2 · 2⌊

n
2⌋−n, and similarly if i1 ̸= i2 as well. By applying this fact

iteratively, and using the expressions for the Fourier coefficients 1̂S2(bj), for 0 ≤ j ≤⌈n
2

⌉
− 1, we obtain the first part of the lemma.

To show that 1̂S2 (s) = 0 for s /∈ VB, we use Plancherel’s Theorem again. Note that

|S2|
2n =

1
2n ∑

x∈{0,1}n

1S2(x)

(a)
=

1
2n ∑

x∈{0,1}n

12
S2
(x)

(b)
= ∑

s∈{0,1}n

(
1̂S2(s)

)2
= ∑

s∈VB

(
1̂S2(s)

)2
+ ∑

s/∈VB

(
1̂S2(s)

)2
, (7.5)

where (a) holds since 1S2 is a Boolean function, and (b) holds by Plancherel’s Theorem.

However, from the first part of the lemma, we get that

∑
s∈VB

(
1̂S2(s)

)2
= |VB| · 22·(⌊ n

2⌋−n)

(c)
= 2⌈

n
2⌉ · 22·(⌊ n

2⌋−n) = 2−⌈
n
2⌉ = |S2|

2n ,
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where equality (c) follows from the fact that |VB| = 2⌈
n
2⌉, since VB = span(B) and the

vectors in B are linearly independent. Hence, plugging back in (7.5), we obtain that

∑s/∈VB

(
1̂S2(s)

)2
= 0, implying that 1̂S2(s) = 0, for all s /∈ VB.

Lemma 7.5.1 informs the construction of linear codes C that have a large number of

codewords c ∈ S2. In particular, note that from Theorem 7.4.1, we have that

N(C; S2) = |C| · ∑
s∈C⊥

1̂S2(s)

= |C| · ∑
s∈C⊥∩VB

1̂S2(s), (7.6)

where, for s ∈ C⊥ ∩ VB, with s = ∑
⌈ n

2⌉−1
i=0 ai · bi, for some a =

(
a0, a1, . . . , a⌈ n

2⌉−1

)
∈

{0, 1}⌈
n
2⌉, we have that 1̂S2(s) = 2⌊

n
2⌋−n ·

(
(−1)∑

⌈ n
2⌉−1

j=1 aj

)
. Now, suppose that n ≥ 3

and C is such that C⊥ does not satisfy the criterion (C) below:

(C) For all s ∈ C⊥ ∩VB, it holds that 1̂S2(s) ≥ 0.

If (C) does not hold, then, it implies that for some s⋆ ∈ C⊥ ∩ VB, it holds that

1̂S2(s
⋆) < 0. Hence, following the reasoning in the proof of Lemma 7.5.1, since C⊥ ∩VB

is a vector space, we have that via the map s 7→ s + s⋆, the number of elements s ∈

C⊥ ∩ VB such that 1̂S2(s) < 0 equals the number of elements s ∈ C⊥ ∩ VB such that

1̂S2(s) > 0. Furthermore, since
∣∣∣1̂S2(s)

∣∣∣ = 2⌊
n
2⌋−n, for all s ∈ C⊥ ∩ VB, we get from

(7.6) that N(C; S2) = 0, in this case.

Hence, in order to construct linear codes C such that N(C, S2) > 0, we require that

criterion (C) is indeed satisfied by the dual code C⊥ of C, with 1̂S2(s
⋆) > 0, for some

s⋆ ∈ C⊥. With this instruction in mind, we can construct linear codes C such that its

dual code C⊥ contains t linearly independent vectors (s1, . . . , st) with 1̂S2(si) > 0, for

all 1 ≤ i ≤ t, and no vectors s ∈ VB with 1̂S2(s) < 0. In such a case, we obtain that

N(C; S2) = |C| · 2t+⌊ n
2⌋−n. From the structure of VB, we see that the largest number

of vectors s ∈ {0, 1}n such that 1̂S2(s) > 0, equals |VB |2 = 2⌈
n
2⌉−1. Hence, the largest
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number of linearly independent vectors t as above, is
⌈n

2

⌉
− 1. The discussion above is

summarized below as a lemma.

Lemma 7.5.2. For any linear code C of blocklength n ≥ 3, the following are true:

1. If criterion (C) is not satisfied, then, N(C, S2) = 0.

2. If criterion (C) is satisfied and there exist tn ∈
[
1 :
⌈n

2

⌉
− 1
]

linearly independent vectors

(s1, . . . , stn) in C⊥ with 1̂S2(si) > 0, for all 1 ≤ i ≤ tn, then, N(C; S2) = |C| ·

2tn+⌊ n
2⌋−n.

We thus understand that given a linear code whose dual code satisfies item 2 of

Lemma 7.5.2, the rate of the largest constrained subcode, C2, of C, all of whose code-

words are in S2, obeys

rate (C2) =
log2 N(C; S2)

n
=

log2 (|C|)
n

+
tn +

⌊n
2

⌋
− n

n
.

In particular, given a sequence of linear codes
{
C(n)

}
n≥1

satisfying item 2 of Lemma

7.5.2, if it holds that rate(C(n)) n→∞−−−→ R ∈ (0, 1), then, the rate of their largest con-

strained subcodes
{
C(n)2

}
n≥1

, all of whose codewords are in S2, obeys

lim inf
n→∞

rate
(
C(n)2

)
= R− 1

2
+ lim inf

n→∞

tn

n
. (7.7)

By arguments similar to those in [47], we obtain that for the constraint identified

by the set S2, there exist cosets of the linear codes
{
C(n)

}
n≥1

with rate(C(n)) n→∞−−−→ R,

the rate of the constrained subcodes of which (in the limit as the blocklength goes to

infinity) is at least R − 1
2 . From (7.7), since tn ∈

[
1 :
⌈n

2

⌉
− 1
]
, we see that we can

construct a sequence of linear codes whose 2-charge constrained subcodes are of rate

larger than or equal to the coset-averaging lower bound in [47]. In other words, it is

possible to achieve the coset-averaging rate lower bound for the 2-charge constraint

(and potentially more) by using the linear code itself, instead of one of its cosets.

Specifically, suppose that we choose tn =
⌈n

2

⌉
− pn, for some positive integer pn

such that limn→∞
pn
n = 0, thereby making dim

(
C⊥n
)
≥ ⌈

n
2⌉−pn

n , where C⊥n is the dual
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code of Cn. Note that this implies that 1− R = limn→∞ rate
(
C⊥
)
≥ 1

2 , and hence that

R ∈ (0, 1
2 ]. In this case, by plugging into (7.7), we obtain that the rate of the largest

constrained subcodes
{
C(n)2

}
n≥1

of
{
C(n)

}
n≥1

is

lim
n→∞

rate
(
C(n)2

)
= R− 1

2
+ lim

n→∞

tn

n
= R.

In other words, in the case where tn =
⌈n

2

⌉
− pn, for pn > 0 as above, the asymptotic

rate of the codewords that lie in S2 equals the asymptotic rate R ∈ (0, 1
2 ] of the code

itself.

Next, we shall make use of Theorem 7.4.1 to compute the number of codewords of

specific linear codes C, which lie in S2. First, we shall apply our results to the [2m −

1, 2m − 1−m] binary Hamming code, for m ≥ 3. We shall use the coordinate ordering

discussed in Section 7.4.

Corollary 7.5.3. For m ≥ 3 and for C being the [2m − 1, 2m − 1− m] Hamming code, we

have that N(C; S2) = 2
⌊

2m−1
2

⌋
−1.

Proof. The dual code C⊥ of the [2m − 1, 2m − 1− m] Hamming code is the [2m − 1, m]

simplex code, all of whose non-zero codewords (i.e., codewords that are not equal

to 02m−1) are of weight 2m−1. Further, a generator matrix of the simplex code un-

der consideration is HHam. Now, let the columns of HHam be indexed by m-tuples

(x1, . . . , xm) ∈ {0, 1}m \ {0m}, ordered in the standard lexicographic order, i.e., the ith

column of G is indexed as Bm(i), for 1 ≤ i ≤ 2m − 1. It is well-known (see, for ex-

ample, Section 1.10 of [64]) that the jth row HHam(j) is the evaluation vector, over the

m-tuples indexing the columns, of the monomial xj, for 1 ≤ j ≤ m. We write this row

as Eval\0(xj).

Consider the first m− 1 rows of HHam, which are the evaluation vectors Eval\0(xj),

for 1 ≤ j ≤ m− 1. It can be checked that the Hamming weight, 2m−1, of any of these

rows is a multiple of 4, when m ≥ 3. Moreover, in any of these rows, if the entry

corresponding to the evaluation point (x1, . . . , xm−1, 0) equals 1, then so does the entry

corresponding to the evaluation point (x1, . . . , xm−1, 1). The above two facts imply that
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each of the first m− 1 rows of HHam can be written as a linear combination of an even

number of vectors bℓ ∈ B, for ℓ ∈ [1 :
⌈

2m−1
2

⌉
− 1]. Hence, from Lemma 7.5.1, it holds

that the Fourier coefficient 1̂S2

(
Eval\0(xj)

)
= 2

⌊
2m−1

2

⌋
−(2m−1), for all 1 ≤ j ≤ m − 1.

Furthermore, observe that the above arguments also hold for any linear combination

of the first m − 1 rows of HHam, i.e., it holds that 1̂S2

(
Eval\0(s)

)
= 2

⌊
2m−1

2

⌋
−(2m−1),

where s = ∑m
j=2 cj · Eval\0(xj), for cj ∈ {0, 1}, j ∈ [2 : m].

It can also be seen that since Eval\0(xm) /∈ VB, we have that 1̂S2

(
Eval\0(xm)

)
= 0,

and similarly, that 1̂S2

(
Eval\0(s)

)
= 0, where s = Eval(x1) + ∑m−1

j=1 cj · Eval(xj), for

cj ∈ {0, 1}, j ∈ [m − 1]. Putting everything together, we observe that for half of the

codewords s ∈ C⊥, the Fourier coefficient 1̂S2(s) equals 2
⌊

2m−1
2

⌋
−(2m−1), and for another

half of the codewords, the Fourier coefficient 1̂S2(s) equals zero. Applying (7.6), we get

that

N(C; S2) = |C| · ∑
s∈C⊥

1̂S2(s)

= 22m−1−m · 2m−1 · 2
⌊

2m−1
2

⌋
−(2m−1)

= 2
⌊

2m−1
2

⌋
−1,

where the second inequality holds since |C| = 22m−1−m and
∣∣C⊥∣∣ = 2m, and half the

codewords s ∈ C⊥ have nonzero Fourier coefficient 1̂S2(s).

Note that in Corollary 7.5.3, the number of constrained codewords in the linear

codes is half the total number of constrained codewords, 2⌊
n
2⌋, of the same blocklength

n as the codes under consideration. However, in the limit as the blocklength goes to

infinity, the rates of the subcodes of the single parity-check and Hamming codes that

lie in S2, equal the noiseless capacity C0 of the constraint (see Section 5.2.2), which in

turn equals 1
2 .

We then move on to counting constrained codewords in the Reed-Muller (RM) fam-

ily of codes. Using the structure of Fourier coefficients given in Lemma 7.5.1 and using

the fact that the dual code of RM(m, r) is the code RM(m, m − r − 1), for r ≤ m − 1,

we numerically calculate the number of constrained codewords N(RM(m, r); S2), for
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(m, r) (4, 2) (4, 3) (5, 3) (6, 4) (7, 5) (8, 6)

N(RM(m, r); S2) 16 128 2048 6.711× 107 1.441× 1017 1.329× 1036

Table 7.1: Table of values of N(RM(m, r); S2), for select parameters m and r

certain (large) values of m and r. Our results are documented in Table 7.1. Note that

the computational technique in Theorem 7.4.1 proves particularly useful when the rate

of RM(m, r) is larger than 1
2 , or equivalently, when r >

⌈m
2

⌉
. The algorithm we have

used for generating the entries in Table 7.1, as an illustration of the application of The-

orem 7.4.1, simply plugs in the Fourier coefficients from Lemma 7.5.1. The time com-

plexity of this algorithm is thus O(n · |C⊥|) for C = RM(m, r).

More generally though, observe that the constraint that a word x ∈ {0, 1}n lies in

S2 can be represented by the set of linear equations (over F2) given by x1 = 0 and x2i +

x2i+1 = 1, for all 1 ≤ i ≤
⌊

n−1
2

⌋
. Furthermore, any linear code C of dimension k and

parity-check matrix H is such that its codewords c are solutions to H · cT = 0n−k. The

2-charge constrained codewords in C can thus be represented as solutions to a system

of linear equations over F2, and the number of such solutions can be determined by

Gaussian elimination, in time that is polynomial in the blocklength n.

7.5.2 Constant Subblock-Composition Constraint

We here consider a different constraint, the constant subblock-composition CSCp
z con-

straint, which requires that each one of the p “subblocks” of a binary sequence have a

constant number, z, of 1s. In particular, for any sequence x ∈ {0, 1}n, we first partition

the n coordinates into p subblocks, with the ℓth subblock being the vector of symbols

xℓ :=
(

xi ∈ {0, 1} : (ℓ−1)n
p + 1 ≤ i ≤ ℓn

p

)
, for 1 ≤ ℓ ≤ p. We implicitly assume that p

divides n. Note that hence x = x1x2 . . . xp. A binary sequence x respects the CSCp
z con-

straint if w(xℓ) = z, for all 1 ≤ ℓ ≤ p. We let Cp
z denote the set of all CSCp

z -constrained
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sequences of length n. CSCp
z -constrained sequences were introduced in [74] for simul-

taneous information and energy transfer to an energy harvesting receiver, while en-

suring that the receiver battery does not drain out during periods of low signal energy

(see [75] and [76] for applications).

The lemma below provides the Fourier coefficients of 1Cp
z
.

Lemma 7.5.4. For s ∈ {0, 1}n with s = s1s2 . . . sp, we have that

2n · 1̂Cp
z
(s) =

p

∏
ℓ=1

K(n/p)
z (w(sℓ)),

where K(n/p)
i (j) = ∑i

t=0(−1)t(j
t)(

n/p−j
i−t ) is the ith-Krawtchouk polynomial, for the length

n/p.

Proof. We have that

2n · 1̂Cp
z
(s) = ∑

x∈{0,1}n : x∈Cp
z

(−1)x·s

= ∑
x1∈{0,1}n/p : w(x1)=z

. . . ∑
xp∈{0,1}n/p : w(xp)=z

(−1)x1·s1 . . . (−1)xp·sp

=
p

∏
ℓ=1

 ∑
xℓ∈{0,1}n/p : w(xℓ)=z

(−1)xℓ·sℓ

 .

Now, for any ℓ ∈ [p], the summation above only on the weight w(sℓ), i.e., for any

permutation of coordinates π : {0, 1}n/p → {0, 1}n/p, it holds that

∑
x∈{0,1}n/p : w(x)=z

(−1)x·(π·sℓ) = ∑
x∈{0,1}n : w(x)=z

(−1)(π·x)·(π·sℓ)

= ∑
x∈{0,1}n : w(x)=z

(−1)x·sℓ .

Hence, for any ℓ ∈ [p] and for sℓ such that w(sℓ) = j, it suffices that we calculate the

summation above at sℓ = s⋆ = (s⋆1 , . . . , s⋆n/p), with s⋆1 = . . . = s⋆j = 1 and s⋆j+1 = . . . =

s⋆n/p = 0. By a direct computation, it can be checked that the summation above equals
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K(n/p)
z (w(sℓ)).

In what follows, we shall concern ourselves with the application of Lemma 7.5.4

and Theorem 7.4.1 to calculating the number of subblock constrained codewords in

Reed-Muller (RM) codes RM(m, r), for selected values of the number of subblocks p.

First, we recall an important property of RM codes, which is sometimes called the

Plotkin decomposition (see [58, Chap. 13] or the survey [52]): any length-2m codeword

c ∈ RM(m, r) can be written as the concatenation c = (u | u + v), where u ∈ RM(m−

1, r) and v ∈ RM(m− 1, r− 1) and the ‘+’ operation in u+v is over F2m−1

2 . Observe that

since RM(m, t), for 1 ≤ t ≤ m, consists of evaluation vectors of Boolean polynomials

of degree at most t, it holds that RM(m− 1, r− 1) ⊂ RM(m− 1, r). In what follows, we

ensure that r ≥ 1 and m is large.

Assume, for simplicity, that p = 2. We then have that for 0 ≤ z ≤ 2m−1,

N
(

RM(m, r); C2
z

)
= ∑

c∈RM(m,r)
1C2

z
(x)

= ∑
u∈RM(m−1,r),

v∈RM(m−1,r−1)

1Wz(u) · 1Wz(u + v), (7.8)

where the second equality uses the Plotkin decomposition and the fact that the set

Wz consists of sequences of Hamming weight exactly z. Further, let u1, u2, . . . , uM

be an enumeration of coset representatives of distinct cosets of RM(m − 1, r − 1) in

RM(m − 1, r), where M = |RM(m−1,r)|
|RM(m−1,r−1)| = 2(

m−1
≤r )−(

m−1
≤r−1) = 2(

m−1
r ). In other words,

ui is a representative of the coset ui + RM(m− 1, r − 1), with ui ∈ RM(m− 1, r), for

1 ≤ i ≤ M, where the cosets uj +RM(m− 1, r− 1), for different values of j, are disjoint.

Let Au(y) be the weight enumerator of the coset u + RM(m− 1, r − 1), at the weight
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0 ≤ y ≤ 2m−1, for u ∈ RM(m− 1, r). Then, from (7.8), we see that

N
(

RM(m, r); C2
z

)
= ∑

u∈RM(m−1,r),
v∈RM(m−1,r−1)

1Wz(u) · 1Wz(u + v)

= ∑
u∈RM(m−1,r)

1Wz(u) · ∑
v∈RM(m−1,r−1)

1Wz(u + v)

= ∑
u∈RM(m−1,r)

1Wz(u) · Au(z)

(a)
=

M

∑
i=1

∑
u∈ui+RM(m−1,r−1)

1Wz(u) · Aui(z) =
M

∑
i=1

(Aui(z))
2 , (7.9)

where equality (a) uses the fact that any u ∈ RM(m− 1, r) belongs to some coset ui +

RM(m− 1, r− 1).

While equality (7.9) provides a neat method to count the number of constrained

codewords N
(
RM(m, r); C2

z
)
, provided the coset weight enumerators Aui(z), 1 ≤ i ≤

M, are known, observe that in the summation in (7.9), we need to perform M − 1 =

2(
m−1

r ) − 1 additions. If r is large, the number of such additions can be fairly high. We

show next that with the help of Theorem III.1 and Lemma IV.3, it is possible to reduce

the number of computations, when r is large. Before we do so, we recall the fact that for

r ≤ m− 1, the dual code of RM(m, r) is the code RM(m, m− r− 1). We let Au(y) be the

weight enumerator of the coset u + RM(m− 1, m− r− 2), at the weight 0 ≤ y ≤ 2m−1,

for u ∈ RM(m− 1, m− r− 1). Further, we let u1, u2, . . . , uM be an enumeration of coset

representatives of distinct cosets of RM(m − 1, m − r − 2) in RM(m − 1, m − r − 1),

where M = |RM(m−1,m−r−1)|
|RM(m−1,m−r−2)| = 2(

m−1
m−r−1).
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Now, applying Theorem III.1, we see that

N
(

RM(m, r); C2
z

)
= ∑

s1s2∈RM(m,m−r−1)
K(n/2)

z (w(s1)) · K
(n/2)
z (w(s2))

= ∑
u∈RM(m−1,m−r−1),
v∈RM(m−1,m−r−2)

K(n/2)
z (w(u)) · K(n/2)

z (w(u + v))

= ∑
u∈RM(m−1,m−r−1)

K(n/2)
z (w(u)) · ∑

v∈RM(m−1,m−r−2)
K(n/2)

z (w(u + v))

= ∑
u∈RM(m−1,m−r−1)

K(n/2)
z (w(u)) ·

2m−1

∑
j=0

Au(j) · K(n/2)
z (j)

=
M

∑
i=1

(
2m−1

∑
j=0

Aui(j) · K(n/2)
z (j)

)2

. (7.10)

Now, observe that using equality (7.10), the number of computations required, in the

form of summations, assuming that the coset weight enumerators Aui(·) are known,

for all 1 ≤ i ≤ M, is 2m−1+M − 1 = 2m−1+( m−1
m−r−1) − 1. Clearly, since for large r (and

large m), we have that m− 1+( m−1
m−r−1) < (m−1

r ), we note the relative ease of calculating

N
(
RM(m, r); C2

z
)

via (7.10), with the aid of Theorem III.1, as compared to using (7.9).

We remark here that the analysis of the number of codewords in RM(m, r) that lie in Cp
z

can be extended to values of p that are powers of 2, by iteratively applying the Plotkin

decomposition. Finally, we note that in order to compute the coset weight enumerators

required in (7.9) and (7.10), one can use the recursive algorithm provided in [77], which

applies to RM codes, in addition to polar codes.

7.6 Applications: Numerically Computable Fourier Co-

efficients

In this section, we shall work with runlength-limited constraints on binary sequences.

We provide recurrence relations for the Fourier coefficients, which allow them to be

efficiently computable, numerically.
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7.6.1 (d, ∞)-Runlength Limited Constraint

In this subsection, we concern ourselves with the (d, ∞)-runlength limited (RLL) con-

straint, considered in Chapters 4 and 5. Recall that this constraint mandates that there

be at least d 0s between every pair of successive 1s in the binary input sequence, where

d ≥ 1. We let S(d,∞) denote the set of (d, ∞)-RLL constrained binary words of length n.

Now, for n ≥ 1, and for s ∈ {0, 1}n, let 1̂S(d,∞)

(n)
(s) denote the Fourier coefficient at

s, when the blocklength is n. We then have that:

Lemma 7.6.1. For n ≥ d + 2 and for s = (s1, . . . , sn) ∈ {0, 1}n, it holds that

1̂S(d,∞)

(n)
(s) = 2−1 · 1̂S(d,∞)

(n−1)
(sn

2) + (−1)s1 · 2−(d+1) · 1̂S(d,∞)

(n−d−1) (
sn

d+2
)

.

Proof. We first write

1̂S(d,∞)

(n)
(s) =

1
2n · ∑

x∈S(d,∞)

(−1)x·s

= 2−n ·
(
#{xn ∈ S(d,∞) : ws(xn) is even} − #{xn ∈ S(d,∞) : ws(xn) is odd}

)
.

(7.11)

We now prove the recurrence relation when s1 = 0. Observe that in this case,

#{xn ∈ S(d,∞) : ws(xn) is even}

= #{xn ∈ S(d,∞) : ws(xn) is even and x1 = 0}+ #{xn ∈ S(d,∞) : ws(xn) is even and x1 = 1}
(a)
= #{xn

2 ∈ S(d,∞) : wsn
2
(xn

2 ) is even}+ #{xn ∈ S(d,∞) : ws(xn) is even and x(d+1)
1 = 10d}

= #{xn
2 ∈ S(d,∞) : wsn

2
(xn

2 ) is even}+ #{xn
d+2 ∈ S(d,∞) : wsn

d+2
(xn

d+2) is even}, (7.12)

where (a) holds because s1 = 0 and from the fact that the (d, ∞)-RLL constraint requires

that xd+1
2 = 0d, if x1 = 1. Similarly, we obtain that

#{xn ∈ S(d,∞) : ws(xn) is odd} =#{xn
2 ∈ S(d,∞) : wsn

2
(xn

2 ) is odd}+

#{xn
d+2 ∈ S(d,∞) : wsn

d+2
(xn

d+2) is odd}. (7.13)
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Now, observe that

1̂S(d,∞)

(n−1)
(sn

2) = 2−(n−1) ·
(

#{xn
2 ∈ S(d,∞) : wsn

2
(xn

2 ) is even}−

#{xn
2 ∈ S(d,∞) : wsn

2
(xn

2 ) is odd}
)

(7.14)

and that

1̂S(d,∞)

(n−d−1)
(sn

d+2)

= 2−(n−d−1) ·
(

#{xn
d+2 ∈ S(d,∞) : wsn

d+2
(xn

d+2) is even}−

#{xn
d+2 ∈ S(d,∞) : wsn

d+2
(xn

d+2) is odd}
)

. (7.15)

Substituting (7.12) and (7.13) in (7.11) and using (7.14) and (7.15), we get the recurrence

relation when s1 = 0. The case when s1 = 1 is proved similarly.

We shall now explain how Lemma 7.6.1 helps compute the Fourier coefficients for a

given (large) n, efficiently. First, we note that a direct computation of all the Fourier co-

efficients of 1S(d,∞)
at blocklength n, can be accomplished by the fast Walsh-Hadamard

transform (FWHT) algorithm (see Exercise 1.12(b) in [70]), in time n · 2n. Now, let us as-

sume that we pre-compute and store the Fourier coefficients
(
1̂S(d,∞)

(m)
(s) : s ∈ {0, 1}m

)
,

for 1 ≤ m ≤ d + 1. These Fourier coefficients help initialize the recurrences in Lemma

7.6.1. Now, given a fixed (large) n, the Fourier coefficients at which blocklength we

intend computing, we shall calculate, using the recurrence relations above, the Fourier

coefficients at all blocklengths d + 2 ≤ m ≤ n, iteratively, beginning at length d + 2,

and increasing m. Assuming that the additions and multiplications in Lemma 7.6.1

take unit time, it can be seen that the time complexity of computing the Fourier co-

efficient at length n grows as ∑n
d+2 2i < 2n+1. This is much less than the time that is

2n+log2 n, taken by the FWHT algorithm.

However, there still remains the issue of storage cost: at a blocklength m, one needs

to store all 2m Fourier coefficients in order to facilitate computation of the Fourier co-

efficients at blocklengths n > m. Hence, assuming that the storage of a single Fourier
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C RM(4, 2) RM(4, 3) Ham3 Ham4

N(C; S(1,∞)) 83 1292 4 101

Table 7.2: Table of values of N(C; S(1,∞))), for select codes C

coefficient takes up one unit of space, we see that we require at least 2n units of memory

in order to store the Fourier coefficients at blocklength n.

We now use the Fourier coefficients that are numerically computed using Lemma

7.6.1, to calculate, in Table 7.2, the number of (1, ∞)-RLL constrained codewords in se-

lect codes, by applying Theorem 7.4.1. We denote the binary Hamming code of block-

length 2t − 1 as Hamt.

7.7 Conclusions and Directions for Future Work

In this chapter, motivated by the approach in Chapter 5 of designing coding schemes

using subcodes of linear codes, for use over input-constrained DMCs, we provided a

Fourier-analytic perspective on the question of calculating the number of (arbitrarily)

constrained codewords in a general linear code. Our approach helped transform our

counting problem into a question about the dual code, via an application of Plancherel’s

Theorem. An important ingredient of our method was the Fourier transform of the in-

dicator function of the constraint, which we showed to be computable (analytically or

numerically), for a number of constraints. Using this Fourier transform, we provided

values (either analytical or numerical) for the number of constrained codewords for

well-known linear codes.

We believe that the Fourier transform of the indicator function of the constraint is

in itself an interesting object for future study, and it is of interest to explore its com-

putability for general families of constraints. In particular, we ask the question if re-

currence relations such as that in Lemma 7.6.1 can be derived more generally for a

class of constraints. Preliminary experiments seem to suggest patterns for such recur-

rence relations, which derive their structure from the characteristic equations of certain
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matrices with entries in {−1, 0,+1}. We believe that this observation merits further ex-

ploration. We are also interested in the applications of such Fourier transforms in other

problems such as obtaining bounds on the sizes of the largest constrained codes with

a prescribed minimum distance. Another interesting line of study would be to build

on the techniques in our work and study the asymptotics of the rates of constrained

subcodes of linear codes of a given rate R ∈ (0, 1).



Chapter 8

Coding Schemes for Runlength-Limited

BECs With Feedback

“Jeeves,” I said. ”A rummy communication has arrived. From Mr. Glossop.

... Message runs as follows:

When you come tomorrow, bring my football boots. Also, if humanly

possible, Irish water-spaniel. Urgent. Regards. Tuppy.

”What do you make of that, Jeeves?”

”As I interpret the document, sir, Mr. Glossop wishes you, when you come

tomorrow, to bring his football boots. Also, if humanly possible, an Irish

water-spaniel. He hints that the matter is urgent, and sends his regards.”

P. G. Wodehouse, Very Good, Jeeves!, 1930

8.1 Introduction

The chapters until now have focused on deriving lower bounds on the capacities of

input-constrained DMCs via either information-theoretic inequalities or by explicit

constructions of coding schemes over such channels. This chapter in part presents

an approach to derive upper bounds on the capacities of a specific class of input-

constrained DMCs, by explicitly solving for the capacity of a related channel model. In

118
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particular, we work with the setting of the input-constrained DMC with causal, noise-

less feedback, and explicitly derive the feedback capacity of the channel. We refer the

reader to Chapter 3 for a brief description of the channel model. Recall that for the

unconstrained DMC, it is known that feedback does not increase its capacity [78]. How-

ever, this statement does not hold in general for channels with memory1. The specific

input-constrained DMC that we shall work with is the (d, ∞)-RLL input-constrained

binary erasure channel (BEC), for which we shall derive a feedback capacity-achieving

coding scheme. However, we shall first present some results on the feedback capacities

of a broad class of channels with memory.

8.2 Literature Survey and Our Work

The feedback capacities of channels with memory were first considered by Massey

in [80], wherein, for causal channels, the supremum of the “directed mutual informa-

tion rate” was proved to be an upper bound on the feedback capacity. Much later,

Tatikonda, in his Ph.D. thesis [81], derived the feedback capacity of a class of memo-

ryless channels, whose inputs are produced by a finite-state machine. For this class of

channels, the problem of feedback capacity computation was cast in [82] as an average-

reward stochastic control problem (see [83]), which was shown to be solvable by dy-

namic programming (DP) methods. The results of these works were unified and gener-

alized in [84], which extended the proofs of Gallager in [6], to the setting of finite-state

channels (FSCs) with causal feedback, where the feedback information provided to the

1For the special class of finite-alphabet channels with additive random noise (where the capacity-

achieving output distribution is the uniform distribution), it was shown in [79] that feedback does not

increase the capacity. Note that here the noise random process can be arbitrary (the noise process is

not even required to be stationary); the result holds so long as the noise process is independent of

the input process. For example, this shows that for the Gilbert-Elliott channel [68], feedback does not

increase capacity. For channels with non-trivial hard input constraints, the capacity-achieving output

distribution is in general not the uniform distribution.
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encoder is a time-invariant, deterministic function of the outputs received by the de-

coder. For formal definitions of the feedback capacity and related information-theoretic

quantities, we refer the reader to [84].

We first state some results from the literature on the (causal, noiseless) feedback

capacities of general finite-state channels (refer Section 4.2 for the definition of FSCs),

the channel model for which is obtained from Figure 3.3, by replacing the DMC with a

generic FSC, and by replacing the constrained encoder with an unconstrained encoder.

We assume, in addition, that the initial state s0 ∈ S is fixed and is known to both

the encoder and the decoder. Then, the feedback capacity of such an FSC is (see, for

example, [84])

Cfb = lim
n→∞

1
n

max
P(xn||yn−1)

I(Xn → Yn),

where, the notation

P(xn||yn−1) :=
n

∏
t=1

P(xt | xt−1, yt−1)

is the “causal conditional distribution” of the inputs given the outputs, and the nota-

tion

I(Xn → Yn) :=
n

∑
t=1

I(Xt; Yt | Yt−1)

stands for the “directed information” between the inputs and the outputs. Note that

in the definitions above, the conditioning on the known initial state s0 is implicitly

present, although it is suppressed in the notation.

At around the same time, the authors of [85] considered the class of the so-called

“unifilar” channels, which are FSCs in which the state st at any time t ≥ 1 is a time-

invariant, deterministic function of the previous state, and the current input and out-

put, i.e., st = f (st−1, xt, yt), for some function f (see Chapter 4 and contrast this with

the definition of an input-driven FSC therein). If the channel is connected2, besides, it

was shown that the feedback capacity of the unifilar channel (with fixed, known initial

2An FSC is connected if for any state s ∈ S , there exists an integer T(s) ≥ 1 and an input distribution

{Q(xt | st−1)}t≥1 (which may depend on s), such that ∑
T(s)
t=1 Pr[St = s | s0] > 0, for all s0 ∈ S .
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state s0) can be expressed as:

Cfb
u = sup

{P(xt|st−1, yt−1)}t≥1

lim inf
n→∞

1
n

n

∑
t=1

I(Xt, St−1; Yt | Yt−1).

Furthermore, the problem of computing the feedback capacity of this class of channels

was cast as a dynamic programming (DP) problem, thereby subsuming the work in

[81]. The work in [85] then applied this technique for explicitly computing the feedback

capacity of the so-called trapdoor channel, and the insights from the DP approach were

used to construct an explicit, zero-error, feedback capacity-achieving coding scheme.

Explicit solutions of the feedback capacity DP problem for several other unifilar finite-

state channels such as the Ising channel [86], the chemical channel [87], the (1, ∞)-RLL

input-constrained BEC [88] and BIBO [89] (binary-input binary-output) channels, and

the (0, k)-RLL input-constrained BEC [90], were provided in later works. The work [91]

then provided (potentially tight) single-letter upper and lower bounds on the feed-

back capacities of connected, unifilar channels, which were extended in [92] to derive

encoder structures, which yield coding schemes based on the posterior-matching prin-

ciple [89, 93].

In what follows, we study the problem of the computation of the feedback capacity

of, and the design of good coding schemes for, the BEC (with erasure probability ϵ;

recalled in Figure 8.1) with the (d, ∞)-RLL input-constraint.

ϵ
ϵ

1− ϵ

1− ϵ

0

1

0
?
1

Figure 8.1: The binary erasure channel with erasure probability ϵ, with input alphabet

X = {0, 1} and output alphabet Y = {0, ?, 1}.

Recall that the (d, ∞)-RLL input constraint, which mandates that there are at least

d 0s between every pair of successive 1s in the input sequence. Figure 8.2 recalls a

state transition graph that represents the constraint. Recall also that the (d, ∞)-RLL



Chapter 8. Coding Schemes for Runlength-Limited BECs With Feedback 122

. . .
0 1 d− 1 d

0 0 0 0

1

1

Figure 8.2: State transition graph for the (d, ∞)-RLL constraint

constraint is a special case of the (d, k)-RLL constraint, which admits only binary se-

quences with at least d and at most k 0s between successive 1s.

In the exposition here, we provide a simple, labelling-based, zero-error feedback

coding scheme for the (d, ∞)-RLL input-constrained BEC, similar to the those pre-

sented in [88] and [90], for other input-constrained BECs. We then prove that our

feedback coding scheme is in fact feedback capacity-achieving. Our method uses the

single-letter bounding techniques in [91] to obtain an upper bound on feedback ca-

pacity, which we show to be equal to the rate of our proposed coding scheme. As a

result, we are able to explicitly characterize the feedback capacity of the (d, ∞)-RLL

input-constrained BEC, which is given by a (d + 1)-parameter optimization problem:

Cfb
(d,∞)(ϵ) = max

δ0,...,δd≥0
∑d

i=0 δi≤1

ϵ̄

(
d
∑

i=0
ϵihb(δi)

)
d
∑

i=0
ϵi + dϵ̄

(
d
∑

i=0
ϵiδi

) .

Our formula generalizes the coding scheme in [88], where the feedback capacity of

the (1, ∞)-RLL input-constrained BEC was derived using dynamic programming tech-

niques. Our work also supplements the results in [90], which provided the feedback ca-

pacity of the (0, k)-RLL input-constrained BEC. However, interestingly, unlike the pre-

vious two results, the feedback capacity of the (d, ∞)-RLL input-constrained BEC, for

general d, does not equal the capacity when the encoder possesses non-causal knowl-

edge of erasures (this observation was also made in [90]). We also compare the feed-

back capacity that we compute with known upper bounds on the non-feedback capac-

ity, and arrive at the conclusion that at least for select values of d, feedback increases
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the capacity of the channel.

8.3 Preliminaries

8.3.1 Problem Definition

In this subsection, we provide more details about the system model of a (d, ∞)-RLL

input-constrained DMC with feedback (the system model of a generic input-constrained

DMC with feedback was first discussed in Chapter 3). Recall that in this setting, the

constrained encoder at time i has, in addition to the message, access to noiseless feed-

back in the form of the outputs, yi−1, from the decoder. It then produces a binary input

symbol xi ∈ {0, 1}, as a function of the specific instance of the message, m, and the

outputs, yi−1, in such a manner that the (d, ∞)-RLL constraint (see Figure 8.2) is re-

spected. We set the channel state alphabet, S , to be {0, 1, . . . , d}. In what follows, we

define some information-theoretic quantities related to this channel model.

Definition 7. An (n, 2nR, (d, ∞)) feedback code for an input-constrained channel is defined

by the encoding functions:

fi : {1, . . . , 2nR} × Y i−1 → X , i ∈ [n],

which satisfy fi(m, yi−1) = 0, if f(i−j)+(m, y(i−j−1)+) = 1 (where x+ is equal to max{x, 0}),

for some j ∈ [d], and a decoding function Γ : Yn → {1, . . . , 2nR}.

The average probability of error for a code is defined as P(n)
e = P(M ̸= Ψ(Yn)). A rate

R is said to be (d, ∞)-feedback achievable if there exists a sequence of (n, 2nR, (d, ∞)) feedback

codes, such that limn→∞ P(n)
e = 0. The feedback capacity Cfb

(d,∞)
is defined to be the supremum

over all (d, ∞)-achievable rates, and is a function of the channel parameters.

Note that our focus will be on the DMC that is the binary erasure channel, or the

BEC, with erasure probability ϵ ∈ [0, 1].
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8.3.2 Q-graphs and (S, Q)-graphs

We now recall the definitions of the Q-graph and the (S, Q)-graph introduced in [91].

Definition 8. A Q-graph is a finite irreducible labelled directed graph on a vertex set Q, with

the property that each q ∈ Q has at most |Y| outgoing edges, each labelled by a unique y ∈ Y .

Thus, there exists a function Φ : Q×Y → Q, such that Φ(q, y) = q′ if, and only if,

there is an edge q
y−→ q′ in the Q-graph. Figure 8.3 depicts a sample Q-graph.

0/?

1

1
0

?

0

?

0 1

2

Figure 8.3: A sample Q-graph. The edge labels represent outputs. The edge labelled

by 0/? should be viewed as two edges, one labelled by 0 and another by ?, merged into

one.

Suppose that we are given an input-constrained DMC W specified by {W(y|x)}.

Let the states of the presentation of the input constraint obey st = f (st−1, xt). Further,

suppose we are given aQ-graph with vertex setQ. We then define an (S, Q)-graph for

this input-constrained DMC as follows:

Definition 9. The (S, Q)-graph is defined to be a directed graph on the vertex set S ×Q, with

edges (s, q)
(x,y)−−→ (s′, q′) if, and only if, W(y|x) > 0, s′ = f (s, x), and q′ = Φ(q, y).

Given an input distribution {P(x|s, q)} defined for each (s, q) in the (S ,Q)-graph,

we have a Markov chain on S × Q, where the transition probability associated with

any edge (x, y) emanating from (s, q) ∈ S ×Q is W(y|x)P(x|s, q). Let G({P(x|s, q)})
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be the subgraph remaining after discarding edges of zero probability. We then define

Ω ≜
{
{P(x|s, q)} : G({P(x|s, q)}) has a single closed communicating class

}
.

An input distribution {P(x|s, q)} ∈ Ω is said to be aperiodic, if the corresponding graph,

G({P(x|s, q)}), is aperiodic. For such distributions, the Markov chain on S ×Q has a

unique stationary distribution π(s, q).

8.3.3 Bounds on Feedback Capacity

We shall make use of the following single-letter upper bound on feedback capacity

(specialized to input-constrained DMCs) [91]. The theorem assumes that the state tran-

sition graph corresponding to the input constraint is irreducible, and that the encoder

and the decoder know the initial channel state, s0.

Theorem 8.3.1 ( [91], Theorem 2). The feedback capacity, Cfb
DMC, of an input-constrained

DMC, when the state transition graph of the input-constraint is irreducible, is upper bounded

as

Cfb
DMC ≤ sup

P(x|s,q)∈Ω
I(X; Y|Q),

for all irreducible Q-graphs with q0 such that (s0, q0) lies in an aperiodic closed communicating

class.

8.4 Main Results

8.4.1 Capacity With Feedback

The following theorem states our main result concerning the capacity of the (d, ∞)-

RLL input-constrained BEC with feedback. For δ⃗ = (δ0, . . . , δd), with δi ∈ [0, 1], ∀i, we
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define the function R(⃗δ), where δ⃗ ∈ [0, 1]d+1, to be

R(⃗δ) :=
ϵ̄

(
d
∑

i=0
ϵihb(δi)

)
d
∑

i=0
ϵi + dϵ̄

(
d
∑

i=0
ϵiδi

) . (8.1)

We let ∆d+1 denote the following (d + 1)-dimensional simplex: ∆d+1 := {δ⃗ ∈ [0, 1]d+1 :

∑d
i=0 δi ≤ 1}.

Theorem 8.4.1. For ϵ ∈ [0, 1], the feedback capacity of the (d, ∞)-RLL input-constrained BEC

is given by

Cfb
(d,∞)

(ϵ) = max
δ⃗∈∆d+1

R(⃗δ), (8.2)

and is achievable by a zero-error feedback coding scheme.

Remark 8.4.2. At ϵ = 0, the capacities with and without feedback are identical, and are given

by C(d,∞)(0) = max
δ∈[0,1]

hb(δ)
dδ+1 , the noiseless capacity of the (d, ∞)-RLL input constraint.

Remark 8.4.3. Since from operational considerations, the zero-error feedback capacity, Cze
(d,∞)

,

is less than or equal to the feedback capacity, Cfb
(d,∞)

, Theorem 8.4.1 also shows that the two

feedback capacities are indeed equal, i.e., Cze
(d,∞)

= Cfb
(d,∞)

.

Theorem 8.4.1 follows from the construction of a feedback coding scheme in Section

8.5, whose rate equals an upper bound on the feedback capacity computed using the

single-letter bounding technique in [91]. The proof is presented in Section 8.5.

The expression for the feedback capacity provided in Theorem 8.4.1 admits the fol-

lowing simplification:

Proposition 8.4.4. The vector δ⃗⋆ := (δ∗0 , . . . , δ∗d) that attains the maximum in (8.2) is such

that either δ⃗⋆ is in the interior of ∆d+1, or that ∑d
i=0 δi = 1. Further, in the first case, we have

that for any ϵ ∈ [0, 1]:

Cfb
(d,∞)

(ϵ) = max
δ∈[0, 1

d+1 ]

hb(δ)

dδ + 1
1−ϵ

.
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Proof. Proposition 8.4.4 simplifies the maximizing values δ⃗∗ := (δ∗0 , . . . , δ∗d) in the two

cases when the maximum is attained at an interior point of ∆d+1 and when it is attained

on the boundary.

First, we characterize the stationary points of R(⃗δ). We define

N(⃗δ) := ϵ̄

(
d

∑
i=0

ϵihb(δi)

)
, and

D(⃗δ) :=
d

∑
i=0

ϵi + dϵ̄

(
d

∑
i=0

ϵiδi

)
,

to be the numerator and the denominator of R(⃗δ), respectively. Note that for any i ∈

[0 : d],

∂R(⃗δ)
∂δi

∣∣∣∣∣
δ⃗=⃗̃δ

= 0 =⇒ ϵ̄ϵi log2

(
1− δ̃i

δ̃i

)
· D(⃗δ̃) = dϵ̄ϵi · N(⃗δ̃)

=⇒ N(⃗δ̃)

D(⃗δ̃)
=

1
d

log2

(
1− δ̃i

δ̃i

)
. (8.3)

Therefore, from (8.3), we get that

∂R(⃗δ)
∂δi

∣∣∣∣∣
δ⃗=⃗̃δ

= 0, ∀i =⇒ δ̃0 = . . . = δ̃d.

Thus, when the maximum in (8.2) is attained at an interior point, we have that δ∗0 =

. . . = δ∗d = δ∗, thereby showing that in the first case, the feedback capacity

Cfb
(d,∞)(ϵ) = max

δ∈[0, 1
d+1 ]

hb(δ)

dδ + 1
1−ϵ

.

If the maximum is attained at a boundary point of ∆d+1, we wish to show that it holds

that ∑d
i=0 δ∗i = 1. To this end, we first the define the following non-linear optimization
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problem with affine constraints:

maximize R(δ0, . . . , δd)

subj. to g0(⃗δ) := −δ0 ≤ 0, . . . , gd (⃗δ) := −δd ≤ 0,

g̃0(⃗δ) := δ0 − 1 ≤ 0, . . . , g̃d (⃗δ) := δd − 1 ≤ 0,

ĝ(⃗δ) := δ0 + . . . + δd − 1 ≤ 0. (8.4)

Note that the objective function in (8.4) and the constraint functions are all contin-

uously differentiable in [0, 1]d+1 and the constraints are affine functions. Therefore, it

holds from the necessity of the Karush-Kuhn-Tucker (KKT) conditions being satisfied,

that there exist constants {µi}d
i=0, {µ̃i}d

i=0, and µ̂, with µi, µ̃i ≥ 0, ∀i, and µ̂ ≥ 0, such

that:

∇R(⃗δ)
∣∣∣
δ⃗=δ⃗∗

=

(
d

∑
i=0

µi∇gi (⃗δ) +
d

∑
i=0

µ̃i∇g̃i (⃗δ) + µ̂∇ĝ(⃗δ)

) ∣∣∣∣∣
δ⃗=δ⃗∗

. (8.5)

Suppose that the maximum is attained at a boundary point with δ∗j = 0, for some

j ∈ [0 : d]. Following reasoning similar to that in Lemma 13 in Appendix A of [90], we

note that since δ∗j = 0, we do not need to worry about the constraint that g̃j (⃗δ) ≤ 0.

Equation (8.5) then gives us:

∂R(⃗δ)
∂δj

∣∣∣∣∣
δj=0

= −µj + µ̂.

However, we note that

∂R(⃗δ)
∂δj

=
ϵ̄ϵj log2

(
1−δj

δj

)
· D(⃗δ)− dϵ̄ϵj · N(⃗δ)(

D(⃗δ)
)2 ,

which tends to +∞ as δj → 0+. Therefore, it must be that µ̂ = +∞.

Now, again, since the KKT conditions are necessary conditions for optimality in our
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maximization problem, from the complementary slackness condition, we see that:

µ̂ĝ(⃗δ∗) +
d

∑
i=0

µigi (⃗δ
∗) +

d

∑
i=0

µ̃i g̃i (⃗δ
∗) = 0. (8.6)

Since µ̂ = +∞ when the maximum is attained at a boundary point, it follows from

equation (8.6) that ĝ(⃗δ∗) = 0, or, that ∑d
i=0 δ∗i = 1 when δ∗j = 0 for some j.

Figure 8.4 shows plots of the feedback capacity for d = 1, 2, 3. Several comments

are now in order. The feedback capacity is equal to the noiseless capacity at ϵ = 0,

and monotonically decreases to 0 at ϵ = 1. As in [90], numerical evaluations indicate

that the feedback capacity is a concave function of the channel parameter, ϵ. At d = 0,

which corresponds to the case of the BEC with no constraints, R(0.5) equals 1 − ϵ,

which, in turn, equals the (feedback) capacity of the BEC with no input constraints.

For d = 1, it is easy to see that our feedback capacity expression recovers the formula

for feedback capacity derived in [88]. Indeed, for any ϵ, we have that:

Cfb
(1,∞)(ϵ) ≥ max

δ∈[0, 1
2 ]

R(δ, δ) = max
δ∈[0, 1

2 ]

hb(δ)

δ + 1
1−ϵ

= Cnc
(1,∞)(ϵ),

where in the last equality, Cnc
(1,∞)

(ϵ) is the capacity with non-causal knowledge of era-

sures (or non-causal capacity), the expression for which was derived in [88]. However,

once again, from operational considerations, the feedback capacity is less than or equal

to the non-causal capacity, thereby showing that Cfb
(1,∞)

= Cnc
(1,∞)

(ϵ), which agrees with

the main result of [88].

Similar reasoning leads us to the following corollary of Theorem 8.4.1 (stated as

Corollary III.1 in [94]), for the case when d = 2:

Corollary 8.4.5. For d = 2 and ϵ ∈ [0, 1− 1
2 log2(3/2) ], it holds that the feedback and non-

causal capacities are equal, i.e.,

Cfb
(2,∞)

(ϵ) = Cnc
(2,∞)(ϵ) = max

δ∈[0, 1
3 ]

hb(δ)

2δ + 1
1−ϵ

.
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Proof. We note, as before, that it suffices to show that for ϵ ∈ [0, 1− 1
2 log2(3/2) ], it holds

that Cfb
(2,∞)

(ϵ) ≥ Cnc
(2,∞)

(ϵ).

From [90], we know that the non-causal capacity of the (d, ∞)-RLL input-constrained

BEC is given by:

Cnc
(d,∞)(ϵ) = max

δ∈[0, 1
2 ]

V(δ),

where V(δ) = hb(δ)

dδ+ 1
1−ϵ

. We note that the derivative, V′(·), is given by

V′(δ) =
(κ + d) log(1− δ)− κ log δ

(κ + dδ)2 ,

where we write 1
1−ϵ as κ. It can be checked that V′(δ) is strictly decreasing in δ. Now,

when d = 2, it is true that V′
(

1
3

)
≤ 0 if, and only if, κ ≤ 2 log(1+1/2)

log 2 , or, equivalently,

if, and only if, ϵ ≤ 1− 1
2 log( 3

2 )
. Since V′(0+) > 0, we have that for ϵ ≤ 1− 1

2 log( 3
2 )

,

the unique maximum of V(·), over [0, 1], occurs in the interval [0, 1
3 ]. Hence, for ϵ ∈

[0, 1− 1
2 log2(3/2) ], we have that

Cnc
(d,∞)(ϵ) = max

δ∈[0, 1
3 ]

V(δ).

Furthermore, from Theorem 8.4.1, we get that

Cfb
(2,∞)(ϵ) ≥ max

δ∈[0, 1
3 ]

R(δ, δ, δ) = max
δ∈[0, 1

3 ]
V(δ) = Cnc

(2,∞)(ϵ).

We note from the observations in [90] that this equality of feedback and non-causal

capacities is not true for general d.

Figures 8.5a and 8.5b show comparisons of the feedback capacities for d = 1 and

d = 2, respectively, with dual capacity-based upper bounds on the capacities with-

out feedback, derived in [28]. Clearly, the capacity without feedback is less than the

feedback capacity, for this class of channels.
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Figure 8.4: Plots of the feedback capacities for d = 1, 2, 3.

8.5 Optimal Feedback Coding Scheme

This section presents a simple feedback coding scheme that achieves the lower bound

in Theorem 8.4.1. Our labelling-based coding scheme is similar to the coding schemes

in [88] and [90]. The main feature of the scheme is a dynamically-changing set of

possible messages that is known to both the encoder and the decoder at all times.

The objective of the encoder is to communicate a sequence of bits that will enable the

decoder to narrow down the set of possible messages to a single message.

Each message m ∈ [2nR] is mapped uniformly to a point in the unit interval, i.e.,

the message m is mapped to the point m−1
2nR . At each time instant i, the unit interval is

partitioned into sub-intervals that are labelled by either a ‘0’ or a ‘1’. The input xi to

the channel is determined using the label of the sub-interval containing the message.

The coding scheme proceeds as follows: we first fix positive δ0, δ1, . . . , δd such that

∑i δi ≤ 1. To determine the input bits to be sent, we use a set of d + 2 labellings,

L0, . . . ,Ld, L̂, with the interval [∑j<i δj, ∑j≤i δj), in Li, labelled by a ‘1’. Further, la-

belling L̂ is such that the entire interval [0, 1) is labelled by a ‘0’. Figure 8.6 shows an

illustration of the set of labellings.
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(a) (b)

Figure 8.5: Plots (a) and (b) show comparisons of the feedback capacities of the (1, ∞)-

and (2, ∞)-RLL input-constrained BEC with dual capacity-based upper bounds on the

capacity without feedback, from [28].

The labelling to be used at any time instant is a function of the channel outputs upto

that time instant and can be recursively computed using the previous labelling and

previous d + 1 channel outputs. Thus, both the encoder and the decoder can compute

the labelling used at all times. Let Li denote the labelling used at time i. We fix L0 :=

L0. Then, Li+1 = G(Li, Yi
i−d), where the function G is defined as follows:

G(Li, Yi
i−d) =



L̂, if one of Yi
i−d+1 is a 1,

L0, if Yi−d = 1,

L0, if Yi = 0, and none of Yi
i−d+1 is a 1,

Lj + 1 mod(d + 1), if Li = Lj, Yi =?, and none of Yi
i−d+1 is a 1.

The transitions between the labellings can be represented by the finite state machine

(FSM) shown in Figure 8.7. The labellings in conjunction with the message are used

to determine the bit Xi+1 to be transmitted. Formally, Xi+1 = Γ(m, Li+1), where the

function Γ is defined as:
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Figure 8.6: The set of labellings, L0, . . . ,Ld, used in the coding scheme.

Γ(m, Li+1) =


0, if Li+1 = Lj, for some j, and m−1

2nR /∈ [∑z<j δz, ∑z≤j δz),

0, if Li+1 = L̂,

1, if Li+1 = Lj, for some j, and m−1
2nR ∈ [∑z<j δz, ∑z≤j δz).

The chronological order of a single use of the channel at time i, for a fixed message m,

thus is Li → Xi → Yi, with Li+1 = G(Li, Yi
i−d).

For a given output sequence yi, we denote byMi the set of possible messages after

time i, i.e., Mi := {m ∈ [2nR] : P(m|yi) > 0}, with M0 := [2nR]. Note that both

the encoder and the decoder can compute the conditional distribution P(m|yi) using

Bayes’ rule. We use the notationM(0)
i andM(1)

i to denote the set of messages labelled

by a ‘0’ and by a ‘1’, respectively, inMi.

A transmission at time i is said to be successful if |Mi| < |Mi−1|. Specifically, a
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Algorithm 3 Coding Scheme

1: procedure CODE(m)

2: SetM0 = [2nR] and Y0
−d = (0, . . . , 0).

3: Set Label = L0.

4: Set time index i = 1.

5: while |Mi−1| > 1 do

6: Transmit Xi = Γ(m, Label). ▷ Encoder

7: if none of Yi−1
i−d−1 is a 1 then

8: if Yi = 0 then

9: SetMi =M
(0)
i−1.

10: else if Yi = 1 then

11: SetMi =M
(1)
i−1.

12: else

13: SetMi =Mi−1.

14: else

15: SetMi =Mi−1.

16: Label← G(Label, Yi
i−d).

17: Update i = i + 1.

18: Output m̂, whereMi−1 = {m̂}. ▷ Decoder

successful transmission can occur in one of two scenarios: the first is yi = 1, and the

second is where yi = 0 and none of yi−1
i−d is a 1. After a successful transmission, the

set of possible messages is calculated and expanded uniformly to the unit interval. It

is easy to see that in the first kind of successful transmission, the new set of possible

messages,Mi, is equal toM(1)
i−1, and in the second kind,Mi equalsM(0)

i−1. Figure 8.8

shows an illustration of the second of the two kinds of successful transmissions. Figure

8.9 depicts the situation when a sequence of erasures is received. In this case, the new

set of possible messages,Mi, is equal toMi−1. This transmission procedure continues

repeatedly until the set of possible messages contains one message. Additionally, we
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Figure 8.7: Figure shows the finite-state machine (FSM) that represents transitions be-

tween the labellings, with the edges labelled by outputs. When the encoder is in state

Qi, for i ∈ {0, 1, . . . , d}, the labelling used is Li, and when the encoder is in state Q̂i,

for i ∈ {0, 1, . . . , d− 1}, the labelling used is L̂. The edges labelled by 0/? should be

viewed as two edges merged into one.

note that the coding scheme is zero-error, since at the end of the algorithm, the decoder

can uniquely decode the transmitted message. The encoding and decoding procedures

are described in Algorithm 3.

The construction of the labellings ensures that the (d, ∞)-RLL input constraint is

obeyed. This can be seen from the fact that if ever Yi = 1 for some i, then the next d

inputs are all set to be 0s. Further, the staggered manner in which the sub-intervals are

labelled by a 1 in the labellings L0, . . . ,Ld ensures that the input constraint is satisfied

when a sequence of erasures is received, too.

The analysis of the rate of the feedback coding scheme is similar to the proofs of

Lemma 3 and Lemma 4 in [90]. In order to make the exposition self-contained, we

repeat parts of the proofs here. For a time index i ∈ [n], we define Ji to be the number

of information bits gained in a single channel use, which is the logarithm of the change

in the size of possible messages at the end of the channel use, i.e.,

Ji := log2 |Mi−1| − log2 |Mi|. (8.7)
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Figure 8.8: Figure shows an illustration of a successful transmission of the second kind,

when X1 = Y1 = 1, and when the encoder then transmits d additional zeros. Note that

the size of the set of possible messages reduces.

and Li to denote the random variable corresponding to the labelling used, with Li ∈

L := {L̂,L0, . . . ,Ld}. The following lemma then holds true:

Lemma 8.5.1. For any time i ∈ [n], and for all ℓ ∈ L, we have that E[Ji|Li = ℓ] = ϵ̄hb(δℓ),

where

δℓ =

0, if ℓ = L̂,

δj, if ℓ = Lj.

Proof. We let the random variable θ denote the indicator that the current output is

unerased, i.e.,

θi = 1{Yi ̸= ‘?′}.

Then,

E[Ji|Li = ℓ] = ϵE[Ji|Li = ℓ, θi = 0] + ϵ̄E[Ji|Li = ℓ, θi = 1]

= ϵ̄E[Ji|Li = ℓ, θi = 1], (8.8)

where the second equality holds since if an erasure is received, the set of possible mes-

sages remains the same.

We now note that in any of the labellings Lj, it holds that the length of the sub-

interval labelled by a ‘1’ equals δj, and equals 0 in L̂. Hence, if labelling ℓ ∈ L is

employed, the bit transmitted is distributed according to Ber(δℓ) (see the remark im-

mediately after this proof), where δℓ is as defined in the statement of the theorem.
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Figure 8.9: The figure shows the setting when two consecutive erasures are received

(Y1 = Y2 =?), followed by the successful reception of X3 = 1. So long as erasures

are received, the set of possible messages is retained as such, while the labellings cycle

through L0 to Ld. Upon the successful reception of X3, and after the transmission of d

0s, the labelling is changed to L0. However, since the set of possible messages is now a

singleton, the transmission ends with the decoder declaring the correct identity of the

message.

Assume that the current size of the set of possible messages,M, equals k, with the

current labelling used being ℓ. If the current bit transmitted is received successfully,

then, the new set of possible messages has size kδℓ, if the current input bit is a ‘1’, and

is equal to kδ̄ℓ, otherwise. Hence, the expected number of bits required to describe the

new set of possible messages is δ̄ℓk log2(δ̄ℓk) + δℓk log2(δℓk) = log2(k)− hb(δℓ). Thus,

given that L = ℓ, following a successful transmission, the decoder gains hb(δℓ) bits of

information. Substituting into (8.8), we get that

E[J|L = ℓ] = ϵ̄hb(δℓ).

Remark 8.5.2. We note as in [90] that since the messages are discrete points in [0, 1), the

transmitted bit is actually distributed according to Ber(δℓ − ei), where ei is a correction factor
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that is bounded as 0 ≤ ei ≤ 1
|Mi−1|

. We use Algorithm 3 for encoding, until a time t such that

|Mt| ≤ 2λ, for an absolute constant, λ > 0. A clean-up coding phase can then be employed,

after the labelling-based scheme, similar to [88, Appendix C], using which the remaining at

most λ bits are then transmitted. The rate of the overall two-stage coding scheme can then be

made arbitrarily close to the rate calculated using the analysis in this paper.

The following lemma computes the rate of the proposed coding scheme:

Lemma 8.5.3. For any ϵ ∈ [0, 1], the proposed coding scheme achieves a rate

R = max
δ⃗∈∆d+1

R(⃗δ),

where R(⃗δ) is as defined in equation (8.1).

Proof. Fix 0 ≤ δ0, δ1, . . . , δd ≤ 1, with ∑d
i=0 δi ≤ 1. The constraint is chosen so as to

ensure that the lengths of the intervals used in the labellings in Figure 8.6 are all non-

negative.

Consider the Markov chain induced by the transitions shown in Figure 8.7, with the

transition probabilities P(Y =?|q) = ϵ, for all q ∈ {Q0, Q1, . . . , Qd, Q̂0, Q̂1, . . . , Q̂d−1},

and

P(Y = 1|q) =

ϵ̄δi, if q = Qi, for some i,

0, otherwise.

Let π(ℓ) denote the stationary probability of using labelling ℓ, which can be calculated

using the stationary probabilities of states of the Markov chain on the FSM. Clearly,

for i ∈ {0, 1, . . . , d}, π(Li) equals π(Qi), and π(L̂) equals ∑d−1
j=0 π(Q̂j). The rate of the
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coding scheme can be computed to be:

R = lim
n→∞

log2 |M0|
n

(a)
= lim

n→∞

1
n

n

∑
k=1

E[Jk]

= lim
n→∞

1
n

n

∑
k=1

∑
ℓ∈L

P(Lk = ℓ)E[Jk|Lk = ℓ]

(b)
= ∑

ℓ∈L
ϵ̄hb(δℓ) lim

n→∞

1
n

n

∑
k=1

P(Lk = ℓ)

(c)
= ∑

ℓ∈L
ϵ̄hb(δℓ)π(ℓ)

=
d

∑
i=0

ϵ̄hb(δi)π(Li)
(d)
= R(⃗δ),

where

(a) holds from equation (8.7),

(b) follows from Lemma 8.5.1 and by exchanging the order of the summations,

(c) follows from the definition of stationary probability and from the fact that the

random process (Ln : n ∈ N) is a positive recurrent, irreducible, aperiodic

Markov chain (this follows from the irreducibility and aperiodicity of the graph

in Figure 8.7), and

(d) holds by an explicit calculation of the stationary probabilities of the Markov pro-

cess (Ln : n ∈N), which are given by:

π(ℓ) =


ϵi

∑d
j=0 ϵj+dϵ̄

(
∑d

j=0 ϵjδj

) , ℓ = Li,

dϵ̄
(

∑d
j=0 ϵjδj

)
∑d

j=0 ϵj+dϵ̄
(

∑d
j=0 ϵjδj

) , ℓ = L̂.

Therefore, maximizing over all allowed parameters δ0, . . . , δd, it follows that our coding

scheme achieves a rate R = max
δ⃗∈∆d+1

R(⃗δ).



Chapter 8. Coding Schemes for Runlength-Limited BECs With Feedback 140

We now provide an upper bound on the feedback capacity of the (d, ∞)-RLL input-

constrained BEC, using Theorem 8.3.1.

Lemma 8.5.4. For any ϵ ∈ [0, 1], the feedback capacity of the (d, ∞)-RLL input-constrained

BEC is bounded as:

Cfb
(d,∞)

(ϵ) ≤ max
δ⃗∈∆d+1

R(⃗δ).

Proof. We simply apply Theorem 8.3.1 to the Q-graph that is the FSM in Figure 8.7. The

transition probabilities P(Y = y|q) are the same as those in the proof of Lemma 8.5.3,

for y ∈ {0, ?, 1} and q ∈ {Q0, Q1, . . . , Qd, Q̂0, Q̂1, . . . , Q̂d−1}. Note that the definition of

the transition probabilities implies that

P(X = 1|q) =

δi, if q = Qi, for some i,

0, otherwise.

We then have that

I(X; Y|Q)
(a)
= H(Y|Q)− H(Y|X)

= H(Y|Q)− hb(ϵ)

(b)
= ϵ̄H(X|Q) + hb(ϵ)− hb(ϵ)

= ∑
ℓ∈L

ϵ̄hb(δℓ)π(ℓ) =
d

∑
i=0

ϵ̄hb(δi)π(Li) = R(⃗δ),

where

(a) holds due to the memorylessness of the BEC, and

(b) follows from the simple identity that H(ac̄, āc̄, c) = hb(c) + c̄hb(a), for all a, c ∈

[0, 1].

Hence, all that remains to be shown for the proof to be complete is that

sup
{P(x|s,q)}

R(⃗δ) = max
∑d

i=0 δi≤1
R(⃗δ).
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This is true since for any valid input distribution {P(x|s, q)} on the (S, Q)-graph cor-

responding to the Q-graph in Figure 8.7, we have

d

∑
i=0

δi =
d

∑
i=0

P(X = 1|Qi) =
d

∑
i=0

P(X = 1, Qi)

π(Li)

=
d

∑
i=0

P(X = 1, Qi)

ϵiπ(L0)
=

1
π(Ld)

d

∑
i=0

ϵd−iP(X = 1, Qi).

Now,

d

∑
i=0

δi =
1

π(Ld)

d

∑
i=0

ϵd−iP(X = 1, Qi)

=
1

π(Ld)

d

∑
i=0

ϵd−iP(X = 1, S = d, Qi)

≤ 1
π(Ld)

(
d−1

∑
i=0

ϵd−iP(X = 1, S = d, Qi) + P(S = d, Qd)

)

=
1

π(Ld)

(
d−1

∑
i=0

P(S = i, Qd) + P(S = d, Qd)

)
= 1,

where the penultimate equality holds from the structure of the (S, Q)-graph.

Remark 8.5.5. We note that for the case when d = 2, the authors in [90] provide the optimal

Q-graph of Figure 8.7 for evaluating an upper bound on the feedback capacity. We have shown

here that their upper bound is tight.

Lemmas 8.5.3 and 8.5.4, taken together, prove Theorem 8.4.1. We thus obtain an

exact characterization of the feedback capacity, in addition to providing an explicit

coding scheme.

8.6 Conclusions and Directions for Future Work

In this chapter, we proposed explicit, deterministic coding schemes for the binary era-

sure channel (BEC) with a (d, ∞)-runlength limited (RLL) input constraint with feed-

back. In particular, a zero-error, labelling-based feedback capacity-achieving coding
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scheme was demonstrated, thereby allowing for the exact computation of the feed-

back capacity of the class of channels under consideration—a problem that was left

open. This allowed us to obtain upper bounds, via the feedback capacity, on the non-

feedback capacity of such input-constrained channels. It was also shown that for this

class of channels, for at least selected values of d, feedback indeed increases the capac-

ity.

An important open question in the setting with causal, noiseless feedback is whether

the feedback capacity of general input-constrained DMCs is achievable using input

distributions of finite output memory. This question can also be asked of other unifilar

FSCs. For the (0, k)- and (d, ∞)-RLL BECs, we know (from our work and from [90])

that there exists an optimal input distribution that depends only on finitely-many past

outputs. However, there does exist a unifilar FSC, the so-called chemical channel, for

which it was observed [87] that for a range of channel parameters, under the (numer-

ically calculated) optimal input distribution, in the steady-state, there are infinitely-

many states of the dynamic programming problem associated with feedback capacity

computation. This indicates (see [85] for more on the DP formulation) that the opti-

mal input distribution in this case depends on infinitely-many past outputs. It is of

interest, hence, to characterize the classes of input constraints for which optimal input

distributions of finite memory exist. As a first step, one could try to extend the coding

schemes in the literature (including the one presented in this paper) to the BEC with a

(d, k)-RLL input constraint, for d ̸= 0 and k ̸= ∞.

Another interesting question is the study of the delayed feedback capacities of

input-constrained DMCs. The work in [81] provided a DP formulation of the prob-

lem of delayed feedback capacity computation, and also discussed some numerical

results. Clearly, since the delayed feedback capacity Cfb,∆, where the output feedback

is delayed by ∆ > 1 time steps, is an upper bound on the non-feedback capacity, such

an approach can lead us to non-trivial upper bounds on the non-feedback capacity C.

A recent work [95], for example, has explicitly derived the delayed feedback capacity

of the trapdoor channel when the delay ∆ = 2. Moreover, [81] contains the assertion
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that the feedback capacities Cfb,∆ converge to C in the limit as the delay ∆ tends to

infinity—a fact for which a rigorous proof was not provided. While one can artificially

construct FSCs such that Cfb,∆ > C, for any ∆ > 1, it is of broad interest to characterize

the classes of channels for which such a convergence holds (we attempted a proof of

this for the (1, ∞)-RLL input-constrained BEC, without much success).



Chapter 9

A Version of Delsarte’s Linear Program

for Constrained Systems

There is, one knows not what sweet mystery about this sea, whose gently awful

stirrings seem to speak of some hidden soul beneath...

Herman Melville, Moby Dick; or, The Whale, 1851

9.1 Introduction

Chapters 4–8 were concerned with the computation of the capacities of and the de-

sign of coding schemes for stochastic noise channels (see Chapter 3), with input con-

straints. In this final chapter of the thesis, we focus on the channel model of the input-

constrained adversarial channel, introduced in Chapter 3. In particular, our interest

is in adversarial symmetric bit-flip error or erasure channels, where there is an upper

bound on the number of errors or erasures that can be introduced. Recall that our

objective is to recover the transmitted constrained codeword with zero error.

Recall also the well-known coding-theoretic fact (see, for example, [57]) that the

minimum Hamming distance (or simply, minimum distance) of a (constrained) code

determines the number of such adversarial errors or erasures that it can, with certainty,

tolerate, with zero decoding error. In particular, a (constrained) code C can correct all

144
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patterns of e erasures if and only if e ≤ d(C)− 1, where d(C) is the minimum distance

of C. Likewise, a (constrained) code C can correct all patterns of e bit-flip errors if and

only if e ≤
⌊

d(C)−1
2

⌋
. Hence, in this chapter, we seek to obtain good bounds on the

sizes of constrained codes with a prescribed minimum distance.

9.2 Brief Literature Survey and Our Approach

There is extensive literature on the construction of and bounds for constrained codes

with a certain minimum distance, and we refer the reader to Chapter 9 of [2] for ref-

erences. In particular, [96] provided a simple lower bound on the sizes of runlength-

limited (RLL) constrained codes with a given minimum Hamming distance, by a coset-

averaging argument for linear codes. These bounds were then improved upon by

Kolesnik and Krachkovsky [98] and Marcus and Roth [99], via the solutions to cer-

tain constrained optimization problems. Less was known in the case of upper bounds

on constrained codes with a given minimum distance, until the works of Cullina and

Kiyavash [100] (see also [101]) and Fazeli, Vardy, and Yaakobi [102], which provided

a generalization of the well-known sphere packing bound for codes, to the setting of

constrained codes1. The approach in [100] and [102] was based on finding the size of

the largest matching, or equivalently, the size of the smallest transversal, in a suitably

defined hypergraph.

In this chapter, we provide a different approach to deriving good upper bounds

on the sizes of constrained codes with a given minimum Hamming distance, by mod-

ifying Delsarte’s well-known linear program (LP) [103] to the setting of constrained

systems. While on a first pass, we propose an LP whose number of variables is ex-

ponential in the blocklength of the code, we show that for certain constraints, it is

1While these papers were focused on obtaining bounds on the sizes of codes for combinatorial error

models, their techniques can be easily applied to determining upper bounds on the sizes of constrained

codes with a given minimum distance as well.
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possible to “symmetrize” this LP to derive an equivalent LP with much smaller num-

bers of variables and constraints, which are sometimes only polynomial functions of

the blocklength. We use our LPs to numerically calculate upper bounds on the sizes of

the largest constrained codes with a prescribed minimum distance, for different con-

straints, and show that the values we obtain by our approach beat those obtained via

the generalized sphere packing bounds.

9.3 Preliminaries

We refer the reader to Sections 5.4 and 7.3 for details on block codes and constrained

codes. For this chapter, we also recall the following definition:

Definition 10. The minimum distance d(C) of a block code C is the minimum Hamming

distance between any two distinct codewords of C, i.e.,

d(C) = min
c1,c2∈C : c1 ̸=c2

d(c1, c2).

An (n, M) block code with minimum distance d is called an (n, M, d) block code.

As in Chapter 7, we shall be concerned with constrained binary words that lie in

a certain set A ⊆ {0, 1}n. Here, too, we make no further assumption about the con-

strained system (such as it being finite-type, almost-finite-type, irreducible, etc.). For

a given blocklength n, we use the notation A(n, d;A) to denote the size of the largest

constrained code, of minimum distance at least d, such that all of its codewords lie in

A. More formally,

A(n, d;A) := max
C⊆A: d(C)≥d

|C|.

For the case where A = {0, 1}n, we write A(n, d;A) as simply A(n, d).

We also refer the reader to Section 7.3.3 for background on the Fourier transforms of

real-valued functions on the Boolean hypercube. For this chapter, we will also require
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the operation of convolution of two functions f , g : {0, 1}n → R, defined as

f ⋆ g(x) =
1
2n ∑

z∈{0,1}n

f (z) · g(x + z),

where the ‘+’ operation in x + z above is over vectors in Fn
2 . It is well-known (see [70])

that the Fourier transform f̂ ⋆ g(s) = f̂ (s) · ĝ(s), for any s ∈ {0, 1}n.

9.4 Our Linear Program for Constrained Systems

In this section, we consider the problem of upper bounding the sizes of constrained

codes with a prescribed minimum distance. In particular, we present a linear program

(LP) to upper bound A(n, d;A), for any A ⊆ {0, 1}n. This LP is based on Delsarte’s

linear programming approach [103] to bounding from above the value of A(n, d), for

n ≥ 1 and 1 ≤ d ≤ n. We first recall Delsarte’s LP2, which we call Del(n, d). Given

an LP L, we denote by OPT(L) its optimal value, and for any feasible solution f of

L, we denote the value of the objective function of L evaluated at f as valL( f ). The

subscript will be omitted when the LP being referred to is clear from the context. We

remark here that the LPs in this paper can return non-integral optimal values, and that

integer upper bounds on the sizes of codes can be obtained by suitable rounding of

real numbers. The LP Del(n, d) is given below:

2The version of Delsarte’s LP that is most often used in papers in coding theory, such as in [104], is

obtained after symmetrizing Del(n, d). In particular, the common version of Delsarte’s LP is Del/Sn(n, d)

(see the remark following Theorem 9.5.3), where Sn is the symmetry group on n elements.
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Del(n, d)

maximize
f : {0,1}n→R

∑
x∈{0,1}n

f (x) (Obj)

subject to:

f (x) ≥ 0, ∀ x ∈ {0, 1}n, (C1)

f̂ (s) ≥ 0, ∀ s ∈ {0, 1}n, (C2)

f (x) = 0, if 1 ≤ w(x) ≤ d− 1, (C3)

f (0n) = 1. (C4)

We then have the following well-known result (see, for example, Section 3 in [108]).

We provide a complete proof, since the arguments within lead us to the construction

of our LP for constrained systems.

Theorem 9.4.1. The inequality A(n, d) ≤ OPT(Del(n, d)) holds.

Proof. For any block code C of blocklength n and minimum distance at least d, let 1C

denote its indicator function. Let us define fC := 2n

|C|1C ⋆ 1C . We claim that fC is a

feasible solution for Del(n, d), with val( fC) = |C|. Indeed, observe that (C1) is trivially

satisfied, by the definition of the convolution operator. Further, since f̂C = 2n

|C| · 1̂C
2
,

(C2) is satisfied as well. Next, note that (C3) also holds since C is such that d(C) ≥ d,

then 1C(x + z) = 0, for all z ∈ C and any x such that 1 ≤ w(x) ≤ d− 1. Finally,

fC(0n) =
1
|C| ∑

z∈{0,1}n

1C(z) · 1C(z)

=
1
|C| ∑

z∈{0,1}n

1C(z) = 1,
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thereby satisfying (C4) also. Now, the objective value val( fC) is given by

∑
x∈{0,1}n

fC(x) =
1
|C| ∑

x∈{0,1}n
∑

z∈{0,1}n

1C(z) · 1C(x + z)

=
1
|C| ∑

z∈{0,1}n

1C(z) ∑
x∈{0,1}n

1C(x + z) = |C|. (9.1)

Hence, it follows that the optimal value of the LP, OPT(Del(n, d)) ≥ |C|, and since this

holds for all block codes C of blocklength n and minimum distance at least d, we obtain

the statement of the theorem.

We refer the reader to [103–108] and the references therein for a more detailed treat-

ment of linear programming-based upper bounds on the sizes of block codes and lin-

ear codes, and for the derivation of analytical upper bounds via the dual LP or using

modern Fourier-theoretic or expander graph-based arguments.

Our LP, which we call Del(n, d;A), is but a small modification of Del(n, d), to take

into account the fact that all codewords of the code of minimum distance at least d,

whose size we are attempting to bound, must also lie in the set A ⊆ Fn
2 . The LP

Del(n, d;A) is:
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Del(n, d;A)

maximize
f : {0,1}n→R

∑
x∈{0,1}n

f (x) (Obj′)

subject to:

f (x) ≥ 0, ∀ x ∈ {0, 1}n, (D1)

f̂ (s) ≥ 0, ∀ s ∈ {0, 1}n, (D2)

f (x) = 0, if 1 ≤ w(x) ≤ d− 1, (D3)

f (0n) ≤ OPT(Del(n, d)), (D4)

f (x) ≤ 2n · (1A ⋆ 1A)(x), ∀ x ∈ {0, 1}n.

(D5)

Like in the case with Del(n, d), we have an upper bound on A(n, d;A) via the optimal

value of Del(n, d;A).

Theorem 9.4.2. For any A ⊆ {0, 1}n, we have A(n, d;A) ≤ OPT(Del(n, d;A))1/2.

Proof. The proof is very similar to that of Theorem 9.4.1. Let CA be any length-n con-

strained code, with d(CA) ≥ d, such that all codewords in CA lie in A. Observe that

we can write CA as C ∩ A, for some block (not necessarily constrained) code C, with

d(C) ≥ d. Thus, an upper bound on max
C : d(C)≥d

|C ∩A| serves as an upper bound on (and

in fact, equals) A(n, d;A).

Let 1C be the indicator function of a block code C as above, and let 1A be the in-

dicator function of the constraint. We define fC,A := 2n · (1C1A ⋆ 1C1A), and claim

that fC,A is a feasible solution for Del(n, d;A), with the objective function (Obj′) eval-

uating to |C ∩ A|2. To see this, note that the LP constraints (D1)–(D3) are satisfied for

the same reasons as why fC satisfied (C1)–(C3) in Del(n, d) (see the proof of Theorem

9.4.1). Furthermore,

fC,A(0n) = |C ∩ A| ≤ |C| ≤ OPT(Del(n, d)),
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since C is a block code of distance at least d. Hence, (D4) is satisfied by fC,A. Finally,

observe that for any x ∈ {0, 1}n,

fC,A(x) = ∑
z∈{0,1}n

1C(z)1A(z) · 1C(x + z)1A(x + z)

≤ ∑
z∈{0,1}n

1A(z) · 1A(x + z) = 2n · (1A ⋆ 1A)(x),

showing that (D5) also holds. Now, note that val( fC,A) = ∑x∈{0,1}n fC,A(x)= |C ∩ A|2,

by calculations as in (9.1). Hence, we have that OPT(Del(n, d;A)) ≥ |C ∩ A|2, for any

C with minimum distance at least d. The statement of the theorem then follows.

In Section 9.6, we obtain numerical upper bounds on the sizes of constrained codes

with a given minimum Hamming distance, for a number of constraints, via an appli-

cation Theorem 9.4.2 (and Theorem 9.5.3). We now discuss a couple of observations

about Del(n, d;A), stated as propositions.

Proposition 9.4.3. For any A ⊆ {0, 1}n, the inequality (OPT(Del(n, d;A)))1/2 ≤ |A|

holds.

Proof. Note that by (D5), for any feasible solution f of Del(n, d;A), the objective value

∑
x∈{0,1}n

f (x) ≤ ∑
x∈{0,1}n

∑
z∈{0,1}n

1A(z) · 1A(x + z)

= ∑
z∈{0,1}n

1A(z) ∑
x∈{0,1}n

1A(x + z) = |A|2.

The statement of the proposition then follows.

Proposition 9.4.4. For anyA ⊆ {0, 1}n, we have (OPT(Del(n, d;A)))1/2 ≤ OPT(Del(n, d)).

Proof. Given the LP Del(n, d;A), defined by the objective function (Obj′) and the con-

straints (D1)–(D5), we define the new LP Del(n, d) with the same objective function

(Obj′) and using the constraints (D1)–(D4) alone (excluding constraint (D5)). Thus,
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Del(n, d) is given by:

maximize
f : {0,1}n→R

∑
x∈{0,1}n

f (x) (Obj′)

subject to:

f (x) ≥ 0, ∀ x ∈ {0, 1}n, (D1)

f̂ (s) ≥ 0, ∀ s ∈ {0, 1}n, (D2)

f (x) = 0, if 1 ≤ w(x) ≤ d− 1, (D3)

f (0n) ≤ OPT(Del(n, d)), (D4)

It is therefore clear that for any A ⊆ {0, 1}n, the inequality OPT(Del(n, d;A)) ≤

OPT(Del(n, d)) holds. We now claim that OPT(Del(n, d)) = (OPT(Del(n, d)))2.

First, we shall show that the inequality in constraint (D4) in Del(n, d) can be re-

placed with an equality. To see this, suppose that f were an optimal solution to Del(n, d),

with f (0n) < OPT(Del(n, d)). Let c > 0 be such that c ≤ val(Del(n, d)) − f (0n).

We then construct the function f : {0, 1}n → R such that f (0n) = f (0n) + c, and

f (x) = f (x), for x ̸= 0n. It can then easily be verified that f satisfies constraints (D1),

(D3) and (D4). Furthermore, f satisfies (D2) also, since by linearity of the Fourier trans-

form, for any s ∈ {0, 1}n,

(̂ f )(s) = f̂ (s) + c · 1̂{0n}(s)

= f̂ (s) +
c

2n ≥ 0.

Hence, f is a feasible solution to Del(n, d), with val( f ) = ∑
x∈{0,1}n

f (x) + c > val( f ),

which contradicts the optimality of f . Hence, any optimal solution to Del(n, d) must

be such that (D4) is satisfied with an equality, and we can thus replace the inequality

in (D4) with an equality.

Now, in order to prove that (OPT(Del(n, d)))1/2 = OPT(Del(n, d)), it suffices to ob-

serve that any feasible solution f of Del(n, d) yields a feasible solution OPT(Del(n, d)) ·
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f , to Del(n, d) (with the inequality in (D4) changed to an equality). Likewise, any feasi-

ble solution f of Del(n, d) yields a feasible solution f
OPT(Del(n,d)) , to Del(n, d). Owing to

this bijection, we obtain that OPT(Del(n, d)) = OPT(Del(n, d))2.

Using the fact that OPT(Del(n, d;A)) ≤ OPT(Del(n, d)), we obtain the statement

of the proposition.

From Propositions 9.4.3 and 9.4.4, we obtain that the size of the largest constrained

code with minimum distance at least d obeys A(n, d;A) ≤ min{OPT(Del(n, d)), |A|},

for all constraints represented by A ⊆ {0, 1}n.

9.5 Symmetrizing Del(n, d;A)

The linear program Del(n, d;A) discussed in Section 9.4, for a fixed A ⊆ Fn
2 , suffers

from the drawback that the variables, which are precisely the values ( f (x) : x ∈

{0, 1}n), are 2n in number, i.e., exponentially large in the blocklength. The number of

LP constraints, similarly, are exponentially large in n. It would therefore be of interest

to check if the size of the linear program Del(n, d;A), which is the sum of the number of

variables and the number of LP constraints, can be reduced, using symmetries present

in the formulation.

Our exposition in this section on symmetrizing Del(n, d;A), follows that in [108]

(see also [109] for a more general study of symmetrization procedures and [102] for an

application to the generalized sphere packing bounds). Let Sn denote the symmetric

group on n elements, which is the set of all permutations σ : [n] → [n]. Note that

given a length-n vector x = (x1, . . . , xn) ∈ {0, 1}n, a permutation σ ∈ Sn acts on x

as follows: σ · x = (xσ(1), xσ(2), . . . , xσ(n)). The permutation σ also acts on functions

f : {0, 1}n → R via the mapping (σ ◦ f )(x) = f (σ · x), for x ∈ {0, 1}n. Now, given

any set A ⊆ Fn
2 , we define the “symmetry group” of the constraint represented by A

to be the set of all permutations π ∈ Sn that leave the indicator function 1A invariant.

In other words, the symmetry group GA of the constraint represented by A is the set

of all permutations π ∈ Sn such that 1A = π ◦ 1A.
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Given a group G ⊆ Sn of permutations, which acts on the vectors x ∈ {0, 1}n, we

say that Del(n, d;A) is G-invariant, if for all σ ∈ G, we have that if f : {0, 1}n → R is a

feasible solution to Del(n, d;A), then so is σ ◦ f , with val( f ) = val(σ ◦ f ). The following

proposition then holds:

Proposition 9.5.1. Del(n, d;A) is GA-invariant.

Before we prove the above proposition, we shall state and prove a simple lemma.

Lemma 9.5.2. For any function f : {0, 1}n → R and for any permutation σ ∈ Sn,

σ̂ ◦ f (s) = (σ ◦ f̂ )(s), for all s ∈ {0, 1}n.

Proof. Observe that

σ̂ ◦ f (s) = ∑
x∈{0,1}n

f (σ · x) · (−1)x·s

= ∑
x∈{0,1}n

f (σ · x) · (−1)(σ·x)·(σ·s)

= ∑
x∈{0,1}n

f (x) · (−1)x·(σ·s) = (σ ◦ f̂ )(s).

We shall now prove Proposition 9.5.1.

Proof of Proposition 9.5.1. Let π ∈ GA be a permutation in the symmetry group of A

and let f be some feasible solution to Del(n, d;A). We first show that π ◦ f is also a

feasible solution to Del(n, d;A).

(D1) It is clear that if f (x) ≥ 0, then f (π · x) ≥ 0, for all x ∈ {0, 1}n.

(D2) The fact that if f̂ (s) ≥ 0, then π̂ ◦ f (s) ≥ 0, for all s ≥ 0, follows directly from

Lemma 9.5.2.
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(D3) Since any permutation in GA also lies in Sn and hence preserves the weights of

vectors in {0, 1}n, we have (π ◦ f )(x) = 0, for all x ∈ {0, 1}n such that 1 ≤ w(x) ≤

d− 1.

(D4) This constraint is also satisfied by π ◦ f , since π(0n) = 0n, for all π ∈ GA.

(D5) Observe that for any π ∈ GA,

2n · (1A ⋆ 1A)(π · x) = ∑
z∈{0,1}n

1A(z) · 1A(π · x + z)

= ∑
z∈{0,1}n

1A(π · z) · 1A(π · x + π · z)

= ∑
z∈{0,1}n

1A(π · z) · 1A(π · (x + z))

= ∑
z∈{0,1}n

1A(z) · 1A(x + z) = 2n · (1A ⋆ 1A)(x).

Hence, since for all x ∈ {0, 1}n, we have that

π ◦ f (x) ≤ 2n · (1A ⋆ 1A)(π · x)

= 2n · (1A ⋆ 1A)(x),

where the equality holds since π ∈ GA, it follows that (D5) is also satisfied by

π ◦ f .

Finally, we show that the values of the feasible solutions f and π ◦ f are identical:

(Obj′) It is clear that ∑x f (x) = ∑x f (π · x), and hence that val( f ) = val(π ◦ f ).

From the preceding discussion, we see that given a feasible solution f to Del(n, d;A),

we can construct the function f := 1
|GA| ∑

π∈GA
π ◦ f , such that f is also a feasible solution

to the LP (by linearity), with val( f ) = val( f ). Observe, in addition, that f is such that

π ◦ f = f , for all π ∈ GA. Now, given a group H of permutations of n elements, we
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define the equivalence relation ‘∼H’ as follows: for vectors x, y ∈ {0, 1}n, we say that

x ∼H y, if y = σ · x, for some σ ∈ H. Further, we define the set {0, 1}n/H to be the col-

lection of equivalence classes under ∼H, or orbits, given the group H. From the above

discussion, it follows that in order to arrive at an optimal solution to Del(n, d;A), one

can restrict oneself to searching among feasible solutions f that are constant on each

orbit O in {0, 1}n/GA. Such functions f can be expressed as

f (x) = ∑
O∈{0,1}n/GA

aO · 1O(x), (9.2)

where aO ∈ R, for all O ∈ {0, 1}n/GA. Before we work on symmetrizing the con-

straints of Del(n, d;A), we introduce some notation. For an orbit O ∈ {0, 1}n/GA, we

denote by |O| the number of elements in the orbit and by xO (or sO) a representative

element of the orbit. Further, for a given element x ∈ {0, 1}n, we define O(x) to be

the orbit in which x lies. We shall now formulate (D1)–(D5) and the objective function

(Obj′) in Del(n, d;A), based on (9.2).

(D1′) The fact that f (x) ≥ 0 for all x implies that aO ≥ 0, for all O ∈ {0, 1}n/GA.

(D2′) By the linearity of the Fourier transform operation, we obtain that

f̂ (s) = ∑
O∈{0,1}n/GA

aO · 1̂O(s) ≥ 0,

for all s ∈ {0, 1}n.

In fact, note that since GA ⊆ Sn, it can be argued using Lemma 9.5.2 that the

above inequality only needs to hold for orbit representatives sO ∈ {0, 1}n, of

O ∈ {0, 1}n/GA. Indeed, we have that for any π ∈ GA, and for functions f as in

(9.2),

f̂ (π · s) = π̂ ◦ f (s) = f̂ (s),

where the first equality holds by Lemma 9.5.2 and the second holds since π ◦ f =
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f .

(D3′) The constraint (D3) implies that aO = 0, for all O such that 1 ≤ w(xO) ≤ d− 1,

where xO ∈ {0, 1}n is a representative element of the orbit O ∈ {0, 1}n/GA.

(D4′) The constraint (D4) becomes: aO(0n)= a0n ≤ OPT(Del(n, d)), where O(0n)= {0n}

is the orbit that contains the all-zeros word 0n.

(D5′) Similarly, the constraint (D5) reduces to: aO ≤ 2n · (1A ⋆ 1A)(xO), where, again,

xO is some representative element of the orbit O ∈ {0, 1}n/GA.

(Obj′′) From (9.2), we see that the new objective function simply becomes

maximize
aO∈R

∑
O∈{0,1}n/GA

|O| · aO.

We call the symmetrized version of Del(n, d;A) as Del/GA(n, d;A), which is given be-

low.

Del/GA(n, d;A)

maximize
{aO∈R: O∈{0,1}n/GA}

∑
O
|O| · aO (Obj′′)

subject to:

aO ≥ 0, ∀ O ∈ {0, 1}n/GA, (D1′)

∑
O∈{0,1}n/GA

aO · 1̂O(sÕ) ≥ 0, ∀ orbit rep. sÕ ∈ {0, 1}n, (D2′)

aO = 0, if 1 ≤ w(xO) ≤ d− 1, (D3′)

a0n ≤ OPT(Del(n, d)), (D4′)

aO ≤ 2n · (1A ⋆ 1A)(xO), ∀ O ∈ {0, 1}n/GA. (D5′)

The preceding discussion can then be summarized as a theorem.
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Theorem 9.5.3. The LPs Del(n, d;A) and Del/GA(n, d;A) are equivalent in that

OPT(Del(n, d;A)) = OPT(Del/GA(n, d;A)).

Remark 9.5.4. All the above arguments remain valid if we use a subgroup H of the symmetry

group GA as well. For the special case when A = {0, 1}n, we have GA = Sn, and we then

recover the more common version of Delsarte’s LP that is MLP(n, d) in [104]. It is this version

that we use for evaluating the right-hand side of constraints (D4) and (D4′), in our numerical

examples.

Observe that in the symmetrized LP Del/GA(n, d;A), the number of variables is the

number NA of orbits O ∈ {0, 1}n/GA and the number of constraints is at most 4NA+ 1.

Hence, if the constraint is such that the number of orbits NA induced by its symmetry

group is small (as a function of the blocklength n), then the size of the symmetrized

LP is small. In the section that follows, we shall explicitly write down Del/GA(n, d;A),

for select constraints (or sets A), and provide numerical results obtained by running

Del/GA(n, d;A) on those constraints.

9.6 Numerical Trials

9.6.1 2-Charge Constraint

We shall first work with the so-called 2-charge constraint (see Section 1.5.4 in [2] and

Section 7.5.1 for more on the constraint). Recall that the 2-charge constraint admits

only sequences y ∈ {−1,+1}n, whose running sum ∑r
i=1 yi, for any 1 ≤ r ≤ n, obeys

0 ≤ ∑r
i=1 yi ≤ 2.

To any sequence x ∈ {0, 1}n, we associate (in a one-one manner) the sequence y =

((−1)x1 , . . . , (−1)xn) ∈ {−1,+1}n. We let S2 denote the set of sequences x ∈ {0, 1}n

such that y = ((−1)x1 , . . . , (−1)xn) is 2-charge constrained. Thus, the set of constrained

sequences of interest to us is A = S2, with Figure 9.1 being a state transition graph for

sequences in the set S2.
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Figure 9.1: State transition graph for sequences in the set S2.

In what follows, we fix the blocklength n to be odd. Slight modifications of the

construction of the symmetry group GS2 and the identification of the orbits, below,

yield a symmetrized LP Del/GS2
(n, d; S2), when n is even.

Now, consider the following permutations, where n is odd:

1. For even indices i ∈ [n], define π
adj
i : [n]→ [n], such that π

adj
i (i) = i + 1, π

adj
i (i +

1) = i, and π
adj
i (j) = j, for j /∈ {i, i + 1}.

In words, π
adj
i,j swaps adjacent positions i and i + 1, for even i ∈ [n], and leaves

other positions unchanged.

2. For even indices i, j ∈ [n], define π
swap
i,j : [n] → [n], such that π

swap
i,j (i) = j,

π
swap
i,j (i + 1) = j + 1, and πi,j

swap(j) = i, π
swap
i,j (j + 1) = i + 1, with π

swap
i,j (k) = k,

for k /∈ {i, i + 1, j, j + 1}.

In words, π
swap
i,j swaps i and j, and i + 1 and j + 1, for i, j being even, and leaves

other positions unchanged.

The discussion above on the sequences in S2 implies that the symmetry group GS2

of the constraint is generated (via compositions) by {πadj
i : i even} ∪ {πadj

i,j : i, j even}.

Further, consider tuples α ∈ {0, 1} ×
[
0 :
⌊n

2

⌋]
×
[
0 :
⌊n

2

⌋]
of the form α = (b, t00, t11),

with t00 + t11 ≤
⌊n

2

⌋
. For a sequence x ∈ {0, 1}n, we identify b ∈ {0, 1} with x1,

the integer t00 with |{i : i even and (xi, xi+1) = (0, 0)}|, and the integer t11 with

|{i : i even and (xi, xi+1) = (1, 1)}|. Note that then |{i : i even and (xi, xi+1) =

(0, 1) or (1, 0)}| =
⌊n

2

⌋
− t00 − t11. We thus have that the orbits of the symmetry

group of the constraint {0, 1}n/GS2 are in one-one correspondence with tuples of the

form α = (b, t00, t11). Observe that the number of orbits is hence bounded above by

2 ·
⌊n

2

⌋2, and therefore the number of variables and the number of constraints in the

LP Del/GS2
(n, d; S2), are bounded above by a polynomial function of the blocklength
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d Del/GS2
(n, d; S2) GenSph(n, d; S2) Del(n, d)

2 64 64 4096

3 45.255 64 512

4 45.255 64 292.571

5 22.627 64 64

6 17.889 64 40

7 5.657 32 8

8 4.619 32 5.333

9 2.828 16 3.333

10 2.619 16 2.857

Table 9.1: Table of optimal values of the symmetrized Del/GS2
(n, d; S2) LP, the general-

ized sphere packing bound LP GenSph(n, d; S2) in [102] and [100], and the Del(n, d) LP,

for n = 13 and varying values of d.

n, unlike the number of variables in Del(n, d; S2), which equals 2n. Table 9.1 shows

numerical evaluations of Del/GS2
(n, d; S2), when n = 13, for varying values of d. The

table also includes comparisons with upper bounds via the generalized sphere pack-

ing bound of [100] and [102] and with Del(n, d). We observe that once again our LP

provides tighter upper bounds than those obtained by the sphere packing approach.

9.6.2 Constant Subblock Composition Constraint

In this section, we study the derivation of upper bounds for the so-called constant

subblock-composition constraint CSCp
z (see Section 7.5.2), which requires that each one

of the p “subblocks” of a binary sequence have a constant number, z, of 1s. We let Cp
z

denote the set of all CSCp
z -constrained sequences of length n. The structure of the

symmetry group GCp
z

was derived in [110] (see the group H in Section III of [110]),

but to make the exposition self-contained, we present the symmetry group here too.

Explicit closed-form expressions for the generalized sphere packing bounds for this
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constraint were also derived in [110].

We now provide a more explicit form of Del/GA(n, d;A), when A = Cp
z , for a fixed

blocklength n and parameters p and z. From the description of the constraint, it can be

checked that the symmetry group GCp
z

is generated (via compositions) by the following

permutations:

1. For 1 ≤ ℓ ≤ p, and (ℓ−1)n
p + 1 ≤ j ≤ ℓn

p , define π
perm,j
ℓ : [n]→ [n] such that π

perm,j
ℓ

swaps the indices (ℓ−1)n
p + 1 and j, and leaves the other indices in [n] unchanged.

Note that for a fixed block indexed by 1 ≤ ℓ ≤ p, the collection of permutations

{πperm,j
ℓ : (ℓ−1)n

p + 1 ≤ j ≤ ℓn
p } generates a group isomorphic to the symmetric

group Sn/p, which contains all permutations of the indices (ℓ−1)n
p + 1 ≤ i ≤ ℓn

p .

2. For 1 ≤ ℓ, ℓ′ ≤ p, define πexch
ℓ,ℓ′ : [n] → [n] such that πexch

ℓ,ℓ′ swaps the element
(ℓ−1)n

p + j with (ℓ′−1)n
p + j, for all 1 ≤ j ≤ n

p , and leaves the other indices in [n]

unchanged.

In other words, πexch
ℓ,ℓ′ exchanges entire blocks indexed by ℓ and ℓ′.

Note that for a fixed block indexed by 1 ≤ ℓ ≤ p, the collection of permutations{
π

perm,j
ℓ : (ℓ−1)n

p + 1 ≤ j ≤ ℓn
p
}

generates a group isomorphic to the symmetric group

Sn/p, which contains all permutations of the indices (ℓ−1)n
p + 1 ≤ i ≤ ℓn

p . Also, the

collection of permutations {πexch
ℓ,ℓ′ : 1 ≤ ℓ, ℓ′ ≤ p} generates a group isomorphic to the

symmetric group Sp.

From the description of the symmetry group GCp
z

above, we arrive at the fact that

the orbits of the symmetry group are in one-one correspondence with unordered p-

tuples α ∈
[
0 : n

p

]p
. Indeed, a given sequence x ∈ {0, 1}n lies in the orbit α(x) =

(α1(x), . . . , αp(x)), where wt(xℓ) = ασ(ℓ), for 1 ≤ ℓ ≤ p and some permutation σ ∈ Sp.

Note hence that the number of orbits, and therefore the sum of the number of variables

and the number of constraints in Del/G
Cp

z
(n, d; Cp

z ) is bounded above by c ·
(

n
p

)p
, for

some constant c > 0, which is only a polynomial function of the blocklength. Further,

for a given orbit α, we let xα be a representative element of the orbit. In particular, we
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define xα to be the concatenation xα,1xα,2 . . . xα,p, with

xα,ℓ = (1, 1, . . . , 1︸ ︷︷ ︸
α1 such

, 0, 0, . . . , 0) (9.3)

being of length n/p, for 1 ≤ ℓ ≤ p. We thus obtain the following lemma:

Lemma 9.6.1. For given orbits α, α̃, with sα̃ being an orbit representative of α̃, we have

2n · 1̂α(sα̃) =
p

∏
ℓ=1

K(n/p)
αℓ (α̃ℓ),

where for a given length m, K(m)
i is the ith Krawtchouk polynomial, with

K(m)
i (j) =

i

∑
t=0

(−1)t
(

j
t

)(
m− j
i− t

)
.

Proof. We have that

2n · 1̂α(sα̃) = ∑
x∈{0,1}n : α(x)=α

(−1)x·sα̃

=
p

∏
ℓ=1

 ∑
xℓ∈{0,1}n/p : w(x)=αℓ

(−1)x·sα̃,ℓ

 .

By direct calculations, it holds that for any ℓ ∈ [p], the sum in the expression above

equals K(n/p)
αℓ (α̃ℓ), when sα̃,ℓ follows the convention in (9.3).

Tables 9.2 and 9.3 show numerical evaluations of Del/G
Cp

z
(n, d; Cp

z ), when n = 14

and n = 15, respectively, for fixed parameters p and z, and for varying values of d, and

comparisons with upper bounds via the generalized sphere packing bound of [100]

and [102]. Here too our LP provides tighter upper bounds than the generalized sphere

packing bounds.
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d Del/GC2
5
(n, d; C2

5) GenSph(n, d; C2
5)

2 441 441

3 197.9899 441

4 197.9899 441

5 49.574 147

6 35.0542 147

7 11.3137 73.5

Table 9.2: Table of optimal values of the Del/GC2
5
(n, d; C2

5) LP, and the generalized sphere

packing bound LP GenSph(n, d; C2
5), for (n, p, z) = (14, 2, 5), and varying values of d.

d Del/GC3
2
(n, d; C3

2) GenSph(n, d; C3
2)

2 1000 1000

3 826.236 1000

4 826.236 1000

5 157.767 333.333

6 110.851 333.333

7 22.627 166.667

Table 9.3: Table of optimal values of the Del/GC3
2
(n, d; C3

2) LP, and the generalized sphere

packing bound LP GenSph(n, d; C3
2), for (n, p, z) = (15, 3, 2), and varying values of d.

9.6.3 Tail-Biting Constraints

In this section, we briefly discuss the specialization of the Del/GA(n, d;A) LP to the

case of tail-biting constraints represented by a special set A of constrained sequences.

In particular, A has the property that if a sequence x ∈ A, then πcyc,i · x also lies

in A, where for 1 ≤ i ≤ n, πcyc,i shifts each bit in x by i bits to the left, wrapping

around cyclically, if needed. More formally, xπcyc,i(j) = xmod(j+i,n)+1, for 1 ≤ j ≤ n.

Clearly, we have that the symmetry group of the constraint GA contains the cyclic

group Cn, and it is hence possible to symmetrize Del(n, d;A) using Cn. The orbits
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α thus are in one-one correspondence with (fixed) 2-ary necklaces of length n, with

turnovers prohibited (see pg. 18 in [111] and sequence A000031 of [112]). It is known

that the number of such necklaces, and hence the number of orbits, Ncyc(n), is such that

limn→∞
Ncyc(n)

2n/n = 1 (see [113]); in other words, the sum of the number of variables and

constraints in Del/GA(n, d;A), is bounded above by c · 2n

n , for some constant c > 0, and

large enough n. Thus, we obtain a slight reduction in the size of the LP as compared to

Del(n, d;A), which had 2n variables.

We then apply this symmetrization procedure to the tail-biting (1, ∞)-RLL con-

straint, which admits only binary sequences x ∈ {0, 1}n with no consecutive ones

and which are such that (x1, xn) ̸= (1, 1). We let Stail
(1,∞)

denote the collection of such

sequences. Similar to the approach in the previous two subsections, we can set up a

symmetrized LP Del/G
Stail
(1,∞)

(n, d; Stail
(1,∞)

), using the orbits of the cyclic group Cn. Table

9.4 shows numerical evaluations of Del/G
Stail
(1,∞)

(n, d; Stail
(1,∞)

), when n = 13, for varying

values of d, and comparisons with the generalized sphere packing bound. Again, our

LP provides tighter upper bounds than the generalized sphere packing bounds. Ob-

serve also that for certain values of minimum distance d, the optimal value of our LP

coincides with the optimal value of Del(n, d).

9.7 Conclusions and Directions for Future Work

In this chapter, we considered the input-constrained adversarial bit-flip error and era-

sure channels, and sought to obtain bounds on the sizes of the largest constrained

codes that allow for zero-error decoding over such channels. We observed that our

problem is equivalent to determining bounds on the sizes of constrained codes with a

prescribed minimum Hamming distance. Our approach was to provide an extension

of Delsarte’s linear program (LP) for the setting of constrained systems, the square root

of whose optimal value is an upper bound on the size of the largest constrained code

of length n and minimum distance at least d. For select constraints, we showed that it

is possible to reduce the number of variables and LP constraints, via a symmetrization
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d Del/G
Stail
(1,∞)

(n, d; Stail
(1,∞)

) GenSph(n, d; Stail
(1,∞)

) Del(n, d)

2 480.676 521 4096

3 350.055 448.5 512

4 229.569 448.5 292.571

5 64 316.727 64

6 40 316.727 40

7 8 169 8

8 5.333 169 5.333

9 3.333 73.667 3.333

Table 9.4: Table of optimal values of the Del/G
Stail
(1,∞)

(n, d; Stail
(1,∞)

) LP, the generalized

sphere packing bound LP GenSph(n, d; Stail
(1,∞)

) in [102] and [100], and Del(n, d), for

n = 13, and varying values of d.

procedure that made use of the symmetry group of the constraint. We then applied our

LP to different constraints, and observed that our numerical upper bounds are better

than the generalized sphere packing bounds of Fazeli, Vardy, and Yaakobi (2015).

An interesting direction for future work would be to derive a good dual LP formu-

lation for the LP presented here and use this dual LP to arrive at asymptotic (in the

limit as the blocklength goes to infinity) upper bounds on the rate-distance tradeoff for

constrained codes, similar to those that were derived in [104] for unconstrained sys-

tems. This will help us understand if the Gilbert-Varshamov lower bounds of Marcus

and Roth (1992) are tight for any constrained system.



Chapter 10

Conclusions and Future Work

In this thesis, we worked on the explicit computation of bounds on the capacities of,

and the design of coding schemes for, channels with input constraints. In particu-

lar, we derived information-theoretic bounds (lower bounds via Shannon inequalities

and upper bounds via the feedback capacity) on the capacities of input-constrained

discrete memoryless channels (DMCs), and constructed coding schemes, using con-

strained subcodes of Reed-Muller (RM) codes, whose rates were comparable with the

lower bounds. We also provided Fourier-analytic insight into the problem of counting

arbitrarily-constrained codewords in general binary linear codes, in keeping with our

approach of using constrained subcodes of good linear codes over input-constrained

memoryless channels. Finally, we studied upper bounds on the sizes of constrained

codes with a given minimum Hamming distance (or equivalently, upper bounds on

the sizes of error-resilient constrained codes over an adversarial bit-flip error/erasure

channel), via a version of Delsarte’s linear program (LP) for constrained systems.

As is the case with any dissertation, we are left with more questions than answers.

The sections on future work at the end of Chapters 4–9 identified many engaging still-

open research problems. We mention here three problems that we believe are challeng-

ing and promising directions to work on:

1. Resolving Wolf’s Conjecture: As mentioned in Chapter 4, Wolf’s conjecture on

the capacities of runlength limited input-constrained BSCs is still left wanting a

166
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rigorous proof:

Conjecture 10.0.1 (see [32]). For the (d, k)-RLL input-constrained BSC(p), with ca-

pacity C, the inequality

C ≥ κd,k · (1− hb(p)),

holds, where κd,k is the noiseless capacity of the (d, k)-RLL constraint.

2. Designing explicit codes over other FSCs: While this thesis has focused primar-

ily on coding schemes over input-constrained DMCs, it is of broad interest to

design explicit codes over other channels with memory such as the Gilbert-Elliot

channel (GEC). Is it possible achieve good rates over the GEC using well-known

capacity-achieving (over DMCs) codes such as Reed-Muller and polar codes?

3. Deriving asymptotic rate-distance tradeoff for constrained codes: In Chapter 9,

we derived a new LP for upper bounding the sizes of constrained codes with a

given minimum Hamming distance, via a version of Delsarte’s LP. Can one de-

rive good asymptotic bounds on the rate-distance tradeoff for constrained codes,

using our LP, à la the seminal work of McEliece, Rodemich, Rumsey, and Welch

[104]?
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